Background
Early-onset gastric cancer (EOGC) is a lethal malignancy. It differs from late-onset gastric cancer (LOGC) in clinical and molecular characteristics. The current strategies for EOGC detection have certain limitations in diagnostic performance due to the rising trend in EOGC.
Objective
We developed a liquid biopsy signature for EOGC detection.
Design
We use a systematic discovery approach by analysing genome-wide transcriptomic profiling data from EOGC (n=43), LOGC (n=31) and age-matched non-disease controls (n=37) tissue samples. An extracellular vesicle-derived long non-coding RNA (EV-lncRNA) signature was identified in blood samples from a training cohort (n=299), and subsequently confirmed by qPCR in two external validation cohorts (n=462 and n=438), a preoperative/postoperative cohort (n=66) and a gastrointestinal tumour cohort (n=225).
Results
A three EV-lncRNA (NALT1, PTENP1 and HOTTIP) liquid biopsy signature was developed for EOGC detection with an area under the receiver operating characteristic curve (AUROC) of 0.924 (95% CI 0.889 to 0.953). This EV-lncRNA signature provided robust diagnostic performance in two external validation cohorts (Xi’an cohort: AUROC, 0.911; Beijing cohort: AUROC, 0.9323). Furthermore, the EV-lncRNA signature reliably identified resectable stage EOGC patients (stage I/II) and demonstrated better diagnostic performance than traditional GC-related biomarkers in distinguishing early-stage EOGC (stage I) from precancerous lesions. The low levels of this biomarker in postsurgery and other gastrointestinal tumour plasma samples indicated its GC specificity.
Conclusions
The newly developed EV-lncRNA signature effectively identified EOGC patients at a resectable stage with enhanced precision, thereby improving the prognosis of patients who would have otherwise missed the curative treatment window.