Abstract 4140181: Mechanisms of SGLT-2 Inhibitor Empagliflozin in Attenuating Intramitochondrial Stress and Restoring Mitochondrial Function in Hyperglycemic Cardiomyocyte

Circulation, Volume 150, Issue Suppl_1, Page A4140181-A4140181, November 12, 2024. Systemic hyperglycemia causes tissue damage and triggers cardiovascular disease (CVD). Sodium-glucose cotransporter-2 inhibitors (SGLT-2i) are a novel class of glucose-lowering agents that have shown unexpected benefits in clinical trials for the treatment of CVDs. We aim to investigate the underlying mechanisms of how SGLT-2 inhibitors alleviate CVDs associated with elevated glucose stress. iPSC-derived cardiomyocytes (iPSC-CM) were incubated with high glucose concentrations for 72 hours. Mitochondrial function in these cardiomyocytes was assessed by flow cytometry with JC-1 staining and ATP luminescence assay. Intracellular reactive oxygen species (ROS) and intramitochondrial calcium stress were measured using CellROX, MitoSOX, and Rhod-2 AM staining. Patch clamp was employed to determine ion current changes in the cardiomyocytes. Mitochondrial oxygen consumption rate (OCR) and extracellular acidification rate (ECAR) were determined using the Seahorse XFe96 analyzer. In addition, qPCR, Western blot, and DM mouse heart histological analysis were performed to assess the regulation of associated molecules. The results indicated that exposure to a high glucose environment caused cardiomyocyte injury and impaired mitochondrial biosynthesis. Empagliflozin exhibited a beneficial effect on mitochondrial function by reducing ROS production and calcium deposition. It also mitigated the reduction in respiratory OCR of cardiomyocytes induced by high glucose incubation. Furthermore, molecular analysis revealed that Empagliflozin attenuated the dysregulation of mitochondrial calcium channels and biosynthesis by reducing associated gene expression, includingBcl2,Mfn1,Mx2,Oas1,Ant3,Mcu,Micu1,Vdac1,Ryr2, andCypd-ppid. Histological analysis of DM mouse hearts demonstrated that reduced MFN2 and ZBP1 were target molecules for hyperglycemia-induced reduction of calcium channel currents in cardiomyocytes and could be restored by Empagliflozin treatment. This study concludes that high glucose stress diminishes mitochondrial calcium channel regulators MFN2 and ZBP1 in cardiomyocyte, which reduces calcium channel currents and leads to sensitization of cardiomyocyte to arrhythmogenesis, resulting in VT/VF. It provides experimental evidence for the clinical efficacy of Empagliflozin in ameliorating CVDs and managing diabetes-related CVDs.

Leggi
Novembre 2024

Abstract 4140185: The Burden Of Substance Abuse And Mental Health Disorders In Patients Admitted With Stress Cardiomyopathy

Circulation, Volume 150, Issue Suppl_1, Page A4140185-A4140185, November 12, 2024. Introduction:Several studies have linked mental health disorders and substance abuse as risk factors for stress cardiomyopathy (SC). However, the true burden of these disorders amongst patients with stress cardiomyopathy remains unknown.Methods:We used the 2016-2020 National Inpatient Sample database to identify hospitalizations for SC who underwent diagnostic catheterization. We assessed the proportion of patients diagnosed with a substance abuse or mental health disorder. Subsequently, the association of these disorders in SC compared to patients admitted for myocardial infarction (MI) was assessed using the chi-square test.Results:From 2016 to 2020, there were 33,075 hospitalizations for stress cardiomyopathy who were diagnosed by cardiac catheterization. Of these patients, 5,920 (17.9 %) had depression, 8,500 (25.7 %) had anxiety, 1058 (3.2 %) had severe stress reactions, and 16,372 (49.5 %) were diagnosed with a mental health disorder. 9,955 (30.1 %) were smokers, 5,358 (16.2%) abused hallucinogens, 5,457 (16.5 %) abused cocaine, 5,457 (16.5%) abused sedatives, 6,019 (18.2 %) abused cannabis, 5,920 (17.9%) abused opioids, 6,416 (19.4 %) abused alcohol. Subsequently, the association of stress cardiomyopathy with mental and substance abuse disorder was compared with patients admitted with myocardial infarction See Table 1.Conclusion:Mental health and substance abuse disorders are common in patients diagnosed with SC. These disorders are more commonly present in SC compared to MI. Further research is needed to assess the significance of these findings.

Leggi
Novembre 2024

Abstract 4147602: The Paradox Role of Sirtuin 6 In Coronary Microvascular Function under Metabolic Stress

Circulation, Volume 150, Issue Suppl_1, Page A4147602-A4147602, November 12, 2024. Coronary microvascular dysfunction (CMD), which is associated with diabetic cardiomyopathy, Takotsubo cardiomyopathy, andheart failure with preserved ejection fraction (HFpEF), is understudied. CMD is characterized by impaired endothelial-dependent vasodilation, but detailed mechanisms have yet to be elucidated.Nuclear Sirtuin 6 (SIRT6) plays essential roles in gene transcriptional, stress tolerance, DNA repair, inflammation, and aging. SIRT6 is strongly associated with cardiovascular pathologies, but how SIRT6 regulates endothelial metabolisms and homeostasis under metabolic stress and the underlying mechanism remains poorly understood. It might be because global Sirt6 knockout mice are perinatally lethal caused by hypoglycemia, suggesting the essential role of SIRT6 in glucose metabolism.In our preliminary studies, we generated inducible global Sirt6 knockout mice by crossing with Sirt6 f/f mice with CAG-cre (Sirt6f/f, CAG), and mice were viable with normal glucose levels. However, they showed impaired endothelial-dependent dilation (EDD) and impaired coronary flow reserve (CFR), an index clinically used to diagnose CMD. It suggests that deletion of Sirt6 might cause EC dysfunction because Sirt6 is reported to protect EC from premature senescence and oxidative stress by sustaining high eNOS levels. Surprisingly, when we studied non-inducible Sirt6 endothelial-specific knockout (Sirt6f/f, tie-2 cre) and inducible Sirt6 endothelial-specific knockout (Sirt6 f/f,Cdh5-cre/ERT2) and wild-type (WT) mice, Sirt6f/f, Tie-2and Sirt6f/f, Cadh5mice do not phenocopy the inducible global SIRT6 knockout mice, they had normal EDD and CFR. When the mice were fed a high fat and high sugar (HFHS) diet, the Sirt6f/f, Tie-2and Sirt6f/f, Cadh5had impaired EDD, suggesting Sirt 6 functioned differently in the mice fed with chow diet or HFHS diet.We hypothesize Sirt 6 deficiency causes coronary endothelial dysfunction and contributes to CMD; activating Sirt6 will ameliorate CMD. EDD was assessed using myography (DMT). Myocardial blood flow (MBF) was measured by Doppler. Our preliminary data show that the mediator of coronary vasodilation switched from NO to H2O2in the Sirt6 knockout mice with impaired EDD. Interestingly, when the mice fed on HFHS were treated with Sirt 6 activator MDL-800, the coronary microvascular function was improved, and the blood glucose level was decreased. The underlying mechanism and the pathways involved will be elucidated.

Leggi
Novembre 2024

Abstract 4146301: Relationship Between Calf Muscle Pump Function and Exercise Stress Testing

Circulation, Volume 150, Issue Suppl_1, Page A4146301-A4146301, November 12, 2024. Background:Exercise stress testing uses metabolic equivalents of tasks (METs) to measure the energy cost of activities, aiding in the assessment of exercise capacity and cardiovascular health. Despite its significance, the correlation between calf muscle pump function (CPF) and exercise stress testing remains unexplored. We aimed to evaluate the relationship between CPF and peak METs as determined by cardiopulmonary treadmill exercise stress testing.Methods:The study included adults who underwent exercise cardiopulmonary stress testing and venous plethysmography at Mayo Clinic between April 2017 and March 2020. The protocols other than Bruce, Mayo, Modified Naughton, and Naughton protocols were excluded. The CPF ejection fraction (EF) was calculated per leg based on refill volumes post-exercise as a percentage of passive drain refill. The classification of CEAP (Clinical-Etiology-Anatomy-Pathophysiology) was utilized to better understand chronic venous insufficiency (CVI).Results:A total of 155 patients who underwent both exercise stress testing and venous plethysmography were included, with a mean age of 61.31 ± 14.03 years, and 84 (54.2%) were male. The peak measured METs for normal, unilaterally reduced, and bilaterally reduced CPF were 8.5 (2.5), 7.3 (2.1), and 7.1 (2.4), respectively (p=0.004, Figure 1). Multiple linear regression models were developed with METs as the outcome to determine if CPF was an independent predictor of METs on cardiopulmonary exercise stress testing. IIn model 1, the following independent variables were included: resting heart rate, peak heart rate, peak systolic blood pressure, recovery heart rate at minute 1, and worst EF (Table 1). In model 1, with only exercise parameters, lower EF was associated with lower METs (p=0.03). In a second analysis, variables identified as statistically significant with METs in the initial model were included, along with CEAP class (model 2) and CCI (model 3) (Table 2). In model 2, CEAP class 3 or higher was associated with decreased METs on the exercise stress test. This correlation implies that individuals with moderate to severe CVI may influence exercise capacity, demonstrating the interconnectedness of the cardiovascular system. Moreover, in model 3, the CCI, a predictor for mortality, was not significantly associated with METs.Conclusion:Our findings revealed that more severe CVI (CEAP class and reduced CPF) was associated with reduced exercise capacity after accounting for other factors.

Leggi
Novembre 2024

Abstract 4145148: The Hypertrophic Cardiomyopathy Associated Junctophilin-2 E169K Variant Disrupts Mitofusin-2 Binding and Elicits a Pathological Cellular Response to Metabolic Stress

Circulation, Volume 150, Issue Suppl_1, Page A4145148-A4145148, November 12, 2024. Introduction:Junctophilin-2 (JPH2) plays essential roles in multiple cardiac processes including calcium handling, t-tubule structure, and gene regulation. We recently showed JPH2 also has a mitochondrial role as it binds the mitochondrial protein mitofusin-2 (MFN2) and modulates mitochondrial metabolic function. However, the impacts of JPH2 disease-causing variants on MFN2 binding and subsequent cellular responses to metabolic stressors are unknown.Methods:Disease-associated variants in the MFN2 binding domain of JPH2 were engineered and recombinantly expressed in E. coli cells. Purified proteins were then subjected to pulldown experiments to assess MFN2 protein binding. Alphafold3 modeled how MFN2 and JPH2 and JPH2 E169K mutants interacted in the presence or absence of fatty acids. Wildtype JPH2 or JPH2 E169K expression was directed by a doxycycline inducible promoter after being cloned into the AAVS1 locus in JPH2 knockout iPSC-cardiomyocytes. In vitro metabolic stress was induced by incubating iPSC-CM with 150 μM oleate, 150 μM palmitate, and 500 μM carnitine overnight. Super resolution confocal microscopy visualized mitochondria integrity, nuclei shape and size, and lipid droplet accumulation and morphology.Results:In pulldown experiments, the JPH2 E169K mutation disrupted MFN2 binding. Alphafold3-based modeling showed JPH2 E169K disrupted the interaction between the two proteins when modeled with or without lipids (A-D). Control, wild type JPH2, and JPH2 E169K iPSC-CM displayed divergent responses to in vitro metabolic stress. JPH2 E169K cells exhibited pathological mitochondrial network changes characterized by a lower mitochondrial footprint and less network branches (E-G). In addition, the JPH2 E169K iPSC-CM accumulated significantly more lipid droplets in the cytoplasm and the nucleus, and the JPH2 E169K lipid droplets were significantly larger than the other cell types (H-K). Finally, the accumulation of lipid droplets impacted nuclear morphology as the JPH2 E169K cells had nuclear hypertrophy and nuclei were more ellipse-shaped (L-N).Conclusion:The JPH2 E169K variant disrupts MFN2 binding, which results in heightened metabolic stress characterized by lipid droplet accumulation and mitochondrial and nuclear morphological changes. These results implicate a new pathophysiological mechanism for how the JPH2 E169K mutation causes cardiac dysfunction.

Leggi
Novembre 2024

Abstract 4145104: Can Stress Echocardiography during Cardiopulmonary Exercise Testing Help Predict Clinical Outcomes in Right-Sided Congenital Heart Disease?

Circulation, Volume 150, Issue Suppl_1, Page A4145104-A4145104, November 12, 2024. Background:The optimal timing for intervention for pulmonary and right ventricular outflow tract stenosis in adult congenital heart disease (ACHD) remains uncertain. While stress echocardiography is an established modality to improve risk stratification in stenotic left-sided lesions, its utility in right-sided valve disease in the ACHD population has not been studied. We assessed if stress echocardiographic assessment of right ventricular (RV) function during cardiopulmonary exercise testing (CPET) can facilitate risk stratification in the ACHD population.Objectives:The purpose of this study was to determine the relationship between RV augmentation on stress echocardiogram during CPET and morbidity in ACHD patients with sub-pulmonary right ventricles and right-sided stenotic lesions.Methods:A retrospective cohort study of ACHD patients with sub-pulmonary right ventricles who underwent CPET with stress echocardiogram was performed. The primary outcome was defined as having at least one of the following: 1) cardiac related hospitalization, 2) new documented arrhythmia, or 3) new or worsening heart failure. RV augmentation on stress echo was verified by concordance with a second observer.Results:The study included 87 patients, 41 (47%) with repaired tetralogy of Fallot, 9 (10.3%) with RV-PA conduits, and 9 (10.3%) with pulmonary stenosis. On baseline transthoracic echocardiogram, median peak pulmonary valve gradient was 38.7 mmHg (Q1 17.9 , Q3 49.0) and 30% of patients had RV dysfunction. On stress imaging, 13 (14.9%) did not demonstrate RV augmentation. Those without RV augmentation had a lower percent predicted peak Vo2 (61.4% vs 75.4%, p=0.007). Eleven (12.6%) met the primary outcome. Lack of RV augmentation was strongly associated with the primary outcome (OR 4.25, CI 1.04 –17.46, p = 0.04). This association remained true in patients with baseline peak PV gradients less than 50mmHg (OR 8.7, CI 1.68 – 46.79, p = 0.009) and was more pronounced in patients with tetralogy of Fallot (OR 33.99, CI 3.29 – 829, p = 0.007).Conclusions:Lack of RV augmentation on stress echo during CPET is associated with increased morbidity in ACHD patients with right-sided stenotic lesions. These results suggest that stress echocardiography at the time of CPET should be considered in this population.

Leggi
Novembre 2024

Abstract 4147667: Elevated Hsp70 Does Not Rescue BAG3 Levels After Hypoxia-Reperfusion Stress or Ischemia-Reperfusion Injury

Circulation, Volume 150, Issue Suppl_1, Page A4147667-A4147667, November 12, 2024. The co-chaperone BAG3 is critical for protein quality control at the cardiac sarcomere. BAG3 binds to Hsp70 and coordinates the assembly of the CASA (chaperone-assisted selective autophagy) complex, thus supporting proteostasis and cardiomyocyte contractility. BAG3 mutations and/or decreased BAG3 levels are associated with cardiomyopathies, whereas BAG3 overexpression rescues ventricular function after myocardial infarction in mice. Despite BAG3’s promise as a therapeutic target, the mechanisms underlying BAG3 regulation are largely unresolved. Here, we investigate the mechanisms of BAG3 downregulation after stress. We found that BAG3 protein is reduced in human dilated cardiomyopathy hearts compared to non-failing hearts, yet there is an increase inbag3mRNA transcript, suggesting BAG3’s downregulation in heart disease may be controlled post-transcriptionally. To identify these post-transcriptional pathways, we subjected neonatal rat ventricular myocytes (NRVMs) to prolonged hypoxia-reoxygenation (H/R) stress, which recapitulated the decrease in BAG3 levels observed in human heart disease. Notably, disrupting Hsp70 binding to BAG3 in NRVMs via the drug JG-98 decreases BAG3’s half-life by ~90%, suggesting that Hsp70 protects BAG3 from degradation. Loss of Hsp70-mediated protection could contribute to declining BAG3 levels, so we quantified Hsp70 abundance after H/R stress in NRVMs, finding no significant change. We also found that overexpressing inducible Hsp70 did not rescue BAG3 levels. To examine BAG3 regulationin vivo,we subjected wildtype mice to ischemia-reperfusion injury. After 24 hours, male mice had no change in Hsp70 abundance in the left ventricle, whereas Hsp70 was significantly upregulated in female mice. Despite this difference in Hsp70, BAG3 levels were decreased by ~20% in both sexes. Thus, ourin vivoandin vitrodata both suggest that BAG3 downregulation is not caused by loss of Hsp70 binding/protection. Interestingly, the decline in full-length BAG3 (85 kDa) was accompanied by an increase in a BAG3 cleavage product at 74 kDa. We analyzed this product via mass spectrometry, discovering that it lacks a third of the WW domain, which is involved in autophagy. In future experiments, BAG3 cleavage will be explored as a potential mechanism of BAG3 loss. Such mechanisms will provide insight into how to maintain BAG3 levels, and thus cardiac function, during stress.

Leggi
Novembre 2024

Abstract 4131424: Exercise Stress Perfusion Cardiac MRI in Pediatric Patients with Coronary Anomalies

Circulation, Volume 150, Issue Suppl_1, Page A4131424-A4131424, November 12, 2024. Introduction:Anomalous aortic origin of a coronary artery (AAOCA) can result in sudden cardiac death in the young and risk stratification is challenging. Though dobutamine stress cardiac MRI (DS-CMR) is feasible in pediatric patients, exercise stress CMR (ES-CMR) has lower rates of adverse events, higher diagnostic accuracy, and the ability to better reflect the physiologic changes occurring with exercise. No studies have evaluated ES-CMR in the pediatric population. We aim to describe our institution’s experience with ES-CMR using supine bicycle ergometry in patients with AAOCA.Methods:We retrospectively reviewed the medical records of AAOCA patients who underwent ES-CMR at our institution between 2011 and 2024 for demographic, clinical presentation, cardiopulmonary exercise test (CPET) and ES-CMR data. The exercise-based portion of the CMR consisted of supine cycle ergometry utilizing a ramp protocol, immediately after which perfusion imaging was performed. We used descriptive statistics for data analysis.Results:Of 38 patients who underwent ES-CMR, the median age was 16 years (range 13-24) and 68% were male. Diagnoses included anomalous right coronary artery (N=28), anomalous left coronary artery (N=8), and single coronary artery (N=1 single right, N=1 single left). Median maximal heart rate (HR) during ES-CMR was 160 bpm (range 130-190, median 80% predicted) with a median maximal HR during patients’ most recent CPET of 187 bpm (range 160-203, median 97% predicted). No patients had perfusion defects at rest or with exercise stress, or evidence of myocardial scarring. There were no adverse events.Discussion:We demonstrate for the first time the use of ES-CMR in a cohort of pediatric and young adult patients with AAOCA. ES-CMR can provide a unique modality to assess for ischemia at rest and stress as a means of risk stratification and simulate physiologic changes occurring with exercise stress in a single study. Although maximum heart rates during supine cycle ergometry are lower than those reached during CPET, they are similar to those reached during DS-CMR. ES-CMR can be a helpful and safe diagnostic tool in patients with AAOCA.

Leggi
Novembre 2024

Abstract 4142869: Heritable heart failure traits in mice undergoing early life stress

Circulation, Volume 150, Issue Suppl_1, Page A4142869-A4142869, November 12, 2024. Introduction:Adverse childhood experiences, also known as early life stress (ELS), are associated with increased risk of cardiovascular disease in later life, yet the underlying mechanisms remain elusive. Recent evidence indicates that parental life experiences can be transmitted to the offspring.Aim:To investigate the effects of ELS on cardiac structure and function in exposed parents and in their offspring, across 3 generations.Methods:We used ELS mouse model based on unpredictable separation of mouse pups (F1) from their mother (F0) each day for 3 hours from postnatal day 1 (PND1) to PND14 combined with dams exposure to an additional unpredictable stressor (forced swim in 18°C water for 5 minutes or 20-minute physical restraint in a tube) during separation. Control litters were raised normally. Echocardiography was performed at 6, 12 and 18 months in exposed animals (F0), their unexposed offspring (F1) and grand-offspring (F2). Both male and female mice were studied. Heart weight/tibia length was used to assess cardiac mass while Masson’s Trichrome was employed to detect fibrosis. Lung congestion was assessed as lung wet/dry weight ratio. Single-cell RNA sequencing (scRNAseq) was performed in MSUS and control hearts. A 6-week environmental enrichment (EE) program (cages containing running wheels, maze) was employed to test the possible rescue of ELS effects in adult males and their offspring.Results:F1 MSUS mice displayed increased LV mass, impaired diastolic function (assessed by conventional and tissue Doppler analysis) myocardial fibrosis and lung congestion. Time-dependent worsening of cardiac performance was observed from 6 to 18 months, both in males and females. ScRNAseq unveiled dysregulation of transcriptional programs underlying inflammation and lipotoxicity in the cardiomyocyte and endothelial cell clusters. MSUS offsprings did not show changes of cardiac function at 6 months, however diastolic dysfunction and lung congestion were observed at 12 and 18 months. A similar impairment of cardiac function was observed in the MSUS grandoffspring (F3). Of interest, 6-week exposure to an environmental enrichment protocol was able to improve LV mass, diastolic function and lung congestion in 12 months-old MSUS mice.Conclusions:ELS induces a transgenerational transmission of cardiac phenotypic alterations which can be rescued by EE. Our results shed light on the potential role of ELS on heart failure development and potential mitigation strategies.

Leggi
Novembre 2024

Abstract 4147568: Sociodemographic Disparities Associated with Stress, Cardiovascular Disease, and Cancer Outcomes in the All of Us Research Program

Circulation, Volume 150, Issue Suppl_1, Page A4147568-A4147568, November 12, 2024. Introduction:Cardiovascular disease (CVD) and cancer are among the leading causes of morbidity and mortality worldwide. Increasing evidence suggests that sociodemographic factors such as race, ethnicity, income, education, and stress levels significantly influence the prevalence and outcomes of these diseases. TheAll of UsResearch Program provides a unique opportunity to explore these disparities across a diverse U.S. population. This study aims to examine how sociodemographic disparities are associated with stress, CVD, and cancer outcomes. We hypothesize that higher perceived stress levels, lower income, lower education levels, and minority race/ethnicity groups are associated with higher incidences of CVD and cancer.Methods:Data from 55,505All of UsResearch program participants were analyzed. Key variables included age, race, ethnicity, education, household income, perceived stress level, and history of CVD and cancer. Descriptive statistics were used to summarize participant demographics. Multivariate logistic regression models were employed to examine the associations between sociodemographic factors and the outcomes of interest (CVD and cancer).Results:Older participants had a higher prevalence of both CVD (mean age: 60.8 vs. 50.5, p < 0.001) and cancer (mean age: 63.6 vs. 51.7, p < 0.001). Black/African Americans had a higher incidence of CVD (21.3% vs. 78.7%, p < 0.001), while Whites had a higher prevalence of cancer (5.3% vs. 94.7%, p < 0.001). Lower income and higher stress levels were also associated with higher CVD incidence (

Leggi
Novembre 2024

Abstract 4141350: Endothelial-Mesenchymal Transition Mediated by Mechanical Stress Prompts Atrial Fibrogenesis

Circulation, Volume 150, Issue Suppl_1, Page A4141350-A4141350, November 12, 2024. Background:Atrial fibrosis is crucial in developing atrial fibrillation (AF). Elevated atrial pressure may significantly mediate atrial fibrosis, yet its underlying mechanisms remain unclear.Methods:Patients with AF who underwent radiofrequency ablation were recruited. Clinical data, including high-density mapping and imaging information, was analyzed. Multivariate regression analysis was performed to identify risk factors for low-voltage areas in the atrium. The CS-CREM mouse model, an autonomic AF model, was previously developed by our research group. Millar pressure catheters were used to measure left ventricular, right ventricular, and right atrial pressures in CS-CREM mice. Single-nucleus sequencing was employed to map the single-cell transcriptomes of atrial samples in CS-CREM and wild-type mice at different disease stages. Human primary atrial endocardial endothelial cells (ACCE) and HUVEC cell lines were subjected to mechanical stretch using the Flexcell tension system, followed by in vitro validation experiments. Mg101, a calpain inhibitor, was administered to CS-CREM mice for in vivo validation experiments.Results:Elevated atrial pressure in AF patients was identified as a significant risk factor for atrial fibrosis. Atrial pressure-related indices were linearly correlated with atrial fibrosis. Compared to wild-type mice, CS-CREM heterozygous mice exhibited significantly higher atrial pressure and aggravated atrial fibrosis. Single-nucleus sequencing revealed that atrial endocardial endothelial cells in CS-CREM mice underwent endothelial-mesenchymal transition (EnMT) into fibroblasts, with mechanical stress protein Flna being a critical regulatory protein. In vitro experiments demonstrated mechanical stretch-induced EnMT in ACCE and HUVEC cell lines. Mechanical stretch-activated mechanosensitive receptors on ACCE cell membranes led to increased intracellular calcium levels and calpain activation, which cleaved Flna into Flna 90. Flna 90 facilitated the nuclear translocation of transcription factor Smad3/7 and TGF-β, promoting the expressions of EnMT genes. This EnMT process was reversible with Mg101. In vivo experiments showed that Mg101 reduced the incidence of AF and mitigated atrial fibrosis in CS-CREM mice.Conclusion:Mechanical stress induces cleaved Flna 90 from Flna in atrial endocardial endothelial cells, thus assisting transcription factors Smad3/7 and TGF-β in nuclear translocation, regulating EnMT and mediating atrial fibrosis.

Leggi
Novembre 2024

Abstract 4146347: Oxidative Stress Lipids Associate with Mood Disturbance Symptoms and Quality of Life in Acute Ischemic Stroke Patients

Circulation, Volume 150, Issue Suppl_1, Page A4146347-A4146347, November 12, 2024. Background:Acute ischemic stroke (AIS) is a leading cause of mortality and disability globally, disproportionately affecting Black and Latinx populations who experience increased morbidity and mortality compared to their white counterparts. At one month, roughly 50% of AIS survivors experience mood disturbances (e.g., anger, irritability, and aggression) and exhibit a lower health-related quality of life (HRQOL) compared to pre-AIS levels. Downstream biomarkers of mitochondrial dysfunction such as oxidative stress may be important pathophysiological mechanisms underlying mood disturbance symptoms, stroke severity, and long-term functional recovery.Purpose:To examine associations among early and late peripheral plasma lipid levels, mood disturbance symptoms (e.g., anger, irritability), and HRQOL outcome over 3 months (baseline/study day 5, and months 1, 3) in persons following AIS.Methods:The pilot study is a non-probability, convenience sample of adult subjects ( > 18 years of age) with a diagnosis of AIS. Lipidomics analysis was performed using liquid chromatography-mass spectrometry (LC-MS) of untargeted lipids. The Agilent 6545 LC/Q-TOF platform was used to determine the absolute concentration of lipid species from peripheral plasma samples collected days 1, 3, 5 and months 1 and 3 post-AIS. General linear mixed models were used to test the predictive association of lipidomic biomarker mean value of peripheral plasma lipid levels and symptoms and outcomes over time (baseline and months 1 and 3).Results:We analyzed 82 subjects (age = 64 ± 12.1, 52% male, 78% Black, and 94% with hypertension). Elevated oxidative stress biomarkers (e.g., lipoxygenases, arachidonic acid, glycosylphosphatidylinositol) were associated with higher severity of anger and irritability symptoms, and a poorer HRQOL from baseline to 1- and 3-months post-AIS (p=0.04).Conclusion:An untargeted LC-MS lipidomics approach was used to identify lipids following AIS. Because oxidative stress plays a key regulatory role in complex downstream cellular function, these findings may be of great significance in understanding AIS pathophysiology that has the potential to inform personalized preventive strategies.

Leggi
Novembre 2024

Abstract 4145955: In An Experimental Type 2 Diabetes Mellitus Model Induced With Streptozotocin, The Combined Use of Finerenone and Exenatide Reduced Inflammation and Oxidative Stress In The Heart and Kidney Tissues and Improved The Health of The Heart

Circulation, Volume 150, Issue Suppl_1, Page A4145955-A4145955, November 12, 2024. Introduction:Cardiovascular problems are the primary cause of morbidity and death in people with diabetes mellitus.The whole nature of diabetic cardiomyopathy(DCM) is yet unknown.In order to investigate the pathogenesis of DCM and find possible treatment targets,animal models have proven invaluable.It has been common practice to create experimental models of type 2 diabetes(T2DM) using streptozotocin (STZ).Finerenone(F) is a selective mineralocorticoid receptor antagonist and reduces cardiovascular and adverse renal outcomes in diabetes.Exenatide(E) has been approved by the FDA to improve glycemic control in T2DM.Aim:The aim of this study is to investigate the possible cardiorenal protective effects of potential heart failure and chronic kidney injury associated with T2DM and to assess the potential therapeutic roles of Finerenone and Exenatide.To understand the interactions on cardiorenal outcomes of heart failure and diabetes and to effectively manage these two conditions.Methodology:Wistarmale rats with streptozotocin-induced T2DM were used.Five different groups were established as 1)Control,2)STZ,3)STZ+F,4)STZ+E,5)STZ+F+E groups.During the 21-day experiment, blood glucose concentrations were measured in all animal experimental groups.The kidney, heart tissues, and blood serum were collected. Serum urea and creatinine were exanimated.Total antioxidant status(TAS) and total oxidant status(TOS) were examined from blood serum,kidney,heart tissues by spectrophotometric assays. Kidney, heart tissues and blood IL-6, IL-1β, TNF-α gene expressions were examined by qPCR. Cardiac troponin T(cTnT) and troponin I(cTnI) gene expressions were examined by qPCR.p-STAT3 and p-NRF2 protein expressions in heart tissue were assessed by western blotting.Results:Serum urea and creatinine were significantly lower in STZ+E+F group than control group. TAS were significantly higher in STZ+E+F group than control group in serum,heart and kidney tissues.TOS, IL-1β, IL-6, and TNF-α gene expressions were lower in STZ+E+F groups than control group significantly in serum, heart and kidney tissues.cTnT and cTnI gene expressions and p-STAT3 and p-NRF2 protein expressions were lower in STZ+E+F groups than control group significantly in heart tissues.Conclusion:This study demonstrates the potential beneficial effects of Finerenone and Exenatide on cardiorenal complications in T2DM. Evaluation of these drugs in treatment strategies and further clinical trials are recommended.

Leggi
Novembre 2024

Abstract 4138946: Psychological Stress and Risk of Heart Failure and Its Subtypes in the Women’s Health Initiative

Circulation, Volume 150, Issue Suppl_1, Page A4138946-A4138946, November 12, 2024. Background:Psychological stress affects cardiovascular (CV) health via multiple physiological and behavioral pathways. Few studies have assessed whether psychological stress impacts heart failure (HF) incidence. A prior large cohort study identified unique associations between perceived stress and HF subtype, but these associations were confounded by other health risk factors (e.g., prevalent baseline CV disease). No prospective study has evaluated these associations in women free of baseline CV disease.Goal:To evaluate the prospective association of psychological stress with incident HF and HF subtype risk in post-menopausal women.Hypothesis:Psychological stress is prospectively associated with an increased HF hospitalization risk, which may vary by HF type (HFpEF vs. HFrEF).Method:Of 29,703 post-menopausal women enrolled in the Women’s Health Initiative (WHI) free of baseline CV disease and pre-existing HF at first adjudication, psychological stress was assessed via an 11-item scale of stressful life events (SLE) over the past year (WHI screening, 1993-1998) and the 4-item Perceived Stress Scale (PSS; WHI Extension 2, 2010-2015). Incident HF was confirmed via adjudication of self-reported first hospitalization. Cox proportional hazards models adjusting for demographic, medical, and lifestyle factors were used to calculate hazard ratios associating stress quartiles with incident HF, HFpEF, and HFrEF hospitalization.Results:At screening, women were 62±7 years, 49% from underrepresented racial and ethnic populations, and 59% were at least high school graduates. At baseline women reported a mean of 2±.01 SLEs over the past year. Mean PSS scores were 4.16±3.09. Over a median of 15 years, there were 1,624 incident HF events (HFpEF, n=998; HFrEF, n=626). In fully adjusted models neither the number of SLEs or PSS scores were associated with HF risk(Table 1).Conclusions:In this WHI cohort, the number of SLEs and perceived stress were not prospectively associated with risk of HF, HFpEF, or HFrEF hospitalization. Future research is needed to understand whether specific types of stressors, stress measured more proximally to HF onset, or lab-based stress assessments may capture an association of stress with HF risk.

Leggi
Novembre 2024

Abstract 4146434: Factors Associated with Subsequent Catheterization and Identification of High-Grade Obstructive Coronary Artery Disease in Patients Without Known Coronary Disease and a Low to Moderate Short-Term Risk PET/CT Stress Test

Circulation, Volume 150, Issue Suppl_1, Page A4146434-A4146434, November 12, 2024. Background:PET/CT stress test may be performed to risk stratify patients including those without known coronary artery disease (CAD) who may be at risk for short-term adverse cardiac events. In patients with low- to moderate (LTM) risk for short-term MACE and without a known history of CAD, a small percentage of these patients will undergo a coronary angiogram within 90-days, of which some will be diagnosed with high-grade stenosis. The purpose of this study is to determine factors associated with this approach and findings.Methods:Patients without a history of known CAD (n=43,271) undergoing a PET/CT from 2018-2023 at Intermountain Health, with scan interpreted clinically as LTM short-term risk for adverse cardiac events, and ischemic burden 70% stenosis in any vessel), an a priori list of clinical data and PET/CT results were examined.Results:Within 90 days of the LTM risk PET/CT, 3,163 (8.2%) had a coronary angiogram. Of these, 806 (25.5% of angiograms and 2.1% of total LTM) had high-grade CAD. The PET/CT ancillary findings were associated with the largest odds of performing an angiogram and the presence of high-grade CAD (Tables). Factors most likely to be associated with performing an angiogram were an ischemic burden of 7.5-10% (adjusted-OR [adj. OR]=11.54), coronary artery calcification (CAC) score of >300 (adj.-OR =1.62), and myocardial blood flow (MBF) of MBF 2.3). Other clinical parameters associated, after adjustment, with an angiogram were age, male sex, hypertension, elevated troponin, and inpatient status. Many of the same factors were found to be associated with the identification of high-grade CAD. However, being an inpatient was associated with increased odds of angiogram but a decrease in odds of high-grade CAD.Conclusions:In patients without a known history of CAD who underwent PET/CT clinically adjudicated as LTM short-term risk and ischemic burden

Leggi
Novembre 2024

Abstract 4143635: Stress-related Sleep Disturbance Inflames Myocardial cGAS-STING Pathway through activating bone marrow macrophage

Circulation, Volume 150, Issue Suppl_1, Page A4143635-A4143635, November 12, 2024. Background/Introduction:Delayed bedtime following stress disorder is prevalent in waves of pandemics and modern life. Considered to be a specific and important contributor to cardiovascular health, stress-related sleep disturbance has an unmet need in steady preclinical models. We previously found exciting corticotropin-releasing hormone (CRH) neurons in the paraventricular nucleus of the hypothalamus (PVH) area of mice could induce 3-hour-long wakefulness.Methods:The chemogenetic method of designer receptors exclusively activated by designer drugs (DREADD) system was adopted to mimic stress-related sleep disturbance. We transfected PVH CRH neurons with rAAV-hSyn-DIO-hM3Dq-mCherry and rAAV-Crh-CRE. Prolonged CRH neuron activation was induced by daily intraperitoneal injection of clozapine N-oxide (CNO, 3mg/kg) at 9 am. Bulk RNA-sequencing and bioinformatics analysis were conducted for mechanistic exploration.Results:2-week repeated chemogenetic activation of PVH CRH neurons induced a 5-fold corticosterone release, consistent with increased daily 3-hour wakefulness and corresponding decreases in both rapid eye movement (REM) as well as non-REM sleep. Over 30% of chronic CRH activation mice displayed difficulties in maintaining balance and experienced premature mortality. Mice subjected to prolonged CRH activation showed impaired left ventricular ejection fraction (67.9% versus 48.2%, p=0.0011), and immune cell infiltration demonstrated by histological staining. Intriguingly, the number of circulating monocytes increased. Then, we performed bulk RNA-sequencing of heart and bone marrow from CRH-activated and control mice. Differential gene expression and gene set enrichment analysis (GSEA) indicated marked activation of interferon-beta-related pathways in both tissues. Cytosolic DNA-sensing pathway and related key effector genes (cGAS, Cxcl10, Ccl5) were found up-regulated in the heart, while the mitochondrial oxidative phosphorylation pathway was suppressed. We further adopted the CIBERSORT tool to estimate immune infiltration in heart tissues and characterized M1 macrophage as the main pro-inflammatory cell. In our stress-related sleep disturbance mouse model, macrophages in the heart and bone marrow shared similar properties inducing interferon-stimulated genes.Conclusion(s):Taken together, we report a failing heart in a mouse model of stress-related sleep disturbance. The neuro-immune axis involvement and molecular mechanisms merit in-depth explorations.

Leggi
Novembre 2024