Trajectories of functional limitations, health-related quality of life and societal costs in individuals with long COVID: a population-based longitudinal cohort study

Objectives
To examine trajectories of functional limitations, fatigue, health-related quality of life (HRQL) and societal costs of patients referred to long COVID clinics.

Design
A population-based longitudinal cohort study using real-time user data.

Setting
35 specialised long COVID clinics in the UK.

Participants
4087 adults diagnosed with long COVID in primary or secondary care deemed suitable for rehabilitation and registered in the Living With Covid Recovery (LWCR) programme between 4 August 2020 and 5 August 2022.

Main outcome measures
Generalised linear mixed models were fitted to estimate trajectories of functional limitations, using the Work and Social Adjustment Scale (WSAS); scores of ≥20 indicate moderately severe limitations. Other outcomes included fatigue using the Functional Assessment of Chronic Illness Therapy–Fatigue (FACIT-F) reversed score (scores of ≥22 indicate impairment), HRQL using the EQ-5D-5L, and long COVID-related societal costs, encompassing healthcare costs and productivity losses.

Results
The mean WSAS score at 6 months after registration in the LWCR was 19.1 (95% CI 18.6, 19.6), with 46% of the participants (95% CI 40.3%, 52.4%) reporting a WSAS score above 20 (moderately severe or worse impairment). The mean change in the WSAS score over the 6-month period was –0.86 (95% CI –1.32, –0.41). The mean reversed FACIT-F score at 6 months was 29.1 (95% CI 22.7, 35.5) compared with 32.0 (95% CI 31.7, 32.3) at baseline. The mean EQ-5D-5L score remained relatively constant between baseline (0.63, 95% CI 0.62, 0.64) and 6 months (0.64, 95% CI 0.59, 0.69). The monthly societal cost per patient related to long COVID at 6 months was £931, mostly driven by the costs associated with working days lost.

Conclusions
Individuals referred to long COVID clinics in the UK reported small improvements in functional limitations, fatigue, HRQL and ability to work within 6 months of registering in the LWCR programme.

Read More
Novembre 2024

COVID-19 Therapeutics for Nonhospitalized Older Adults

This Viewpoint summarizes the factors contributing to increased risk of severe outcomes and hospitalization associated with COVID-19 among older adults, stresses the importance of assessing COVID-19 risk before infection occurs, calls for all immunocompromised older adults to be considered for COVID-19 treatment, and details 3 recommended COVID-19 therapies.

Read More
Novembre 2024

Abstract 4148010: Evaluation of Echocardiography and Biomarkers for Prognostication of RV Failure in COVID-19 Patients Undergoing Extracorporeal Membrane Oxygenation (ECMO)

Circulation, Volume 150, Issue Suppl_1, Page A4148010-A4148010, November 12, 2024. Background:Severe COVID-19 infection has been associated with acute respiratory distress syndrome (ARDS) and right ventricular (RV) dysfunction. In this study, we report associations between echocardiographic findings and laboratory markers that portend RV failure in patients with ARDS secondary to COVID-19 infection on ECMO.Methods:A single-center study was conducted in the cardiovascular ICU of our institute. A retrospective chart review was performed on 41 patients with COVID-19 on ECMO between March and October 2020. Twenty-two patients had transthoracic echocardiograms (TTE) completed while on ECMO (VV-ECMO = 19, VA-ECMO = 3). Echocardiograms (echo) were obtained pre-cannulation, during ECMO, and post-ECMO decannulation. RV parameters analyzed included tricuspid annular plane systolic excursion (TAPSE), basal diastolic RV diameter, right ventricular fractional area of change (RV FAC), and S’. Laboratory values including BNP, CRP, D-dimer, ferritin, fibrinogen, lactate and troponin were analyzed for correlation with echo findings.Results:TAPSE was significantly lower in deceased patients (1.9± 0.4cm vs 1.3±0.6 cm, P< 0.05). RV FAC and S’ were also lower in the deceased group. TAPSE while on ECMO showed a positive association with peak D-dimer levels in survivors and a negative association in deceased patients. Peri-ECMO fibrinogen and CRP levels were negatively associated with TAPSE in survivors while fibrinogen showed positive association in deceased patients. LDH peak, fibrinogen initial and lactate peak were higher in the deceased[ZQ1] group. There is a trend of increased RV basal diameter in the deceased group (3.9±0.9 vs 4.2±0.9 cm). Last troponin levels were negatively associated with basal diastolic RV diameter while on ECMO in deceased patients.Conclusion:Preservation of RV longitudinal contractility, as reflected by TAPSE, may play an important role in the survival of COVID-19 patients on ECMO. Laboratory markers such as LDH, D-dimer, fibrinogen and lactate may have prognostic value in predicting RV failure. Further studies are required to determine if early initiation of therapies to improve RV systolic function in COVID-19 ECMO patients with ARDS improves outcomes.

Read More
Novembre 2024

Abstract 4145068: Machine learning analysis of serum proteome in the diagnosis of COVID-19 myocarditis

Circulation, Volume 150, Issue Suppl_1, Page A4145068-A4145068, November 12, 2024. Background:The COVID-19 global pandemic was the third leading cause of mortality in the US in 2020 and is associated with numerous complications, including myocarditis. Diagnosis of COVID-19 myocarditis can involve costly and invasive procedures. In addition, asymptomatic myocarditis could place people at risk for arrhythmias and sudden cardiac death.Objective:To use machine learning (ML) of serum proteomics to distinguish asymptomatic COVID-19 positive volunteers with and without myocarditis.Approach and Results:In 2020, for a cohort of 20 previously healthy 18–23-year-old individuals diagnosed with COVID-19 two weeks after the diagnosis, CMR was performed to assess for evidence of cardiac inflammation and serum samples were obtained the same day (10 were diagnosed as myocarditis positive and 10 negative) We performed proteomic analysis using the SomaScan proteomics assay from SomaLogic. The data were passed through an initial feature selection process of 1000 rounds of bootstrapped multivariate logistic regression using L1-regularization to introduce sparser feature utilization. The top 25 features (largest absolute log-odds) were utilized for a final logistic regression analysis. The feature selection step was optimized to have an average receiver operating characteristic area under the curve (ROCAUC) of 83.29% over 1000 iterations, but the final model utilizing only 25 proteins achieved an average ROCAUC of 99.58%. This method produced 22 proteins with significant odds-ratios for COVID-19 myocarditis (OR 95%CI excluding 1), of particular interest are those involved in inflammatory control and injury response mechanisms. Increases in the heat shock protein DNAJB11 (1.19 [1.10, 1.27]) and calponin-2 (1.17 [1.10, 1.25]), as well as decreases IL1RN (0.88 [0.83, 0.93]) were associated in increased likelihood of CMR diagnosed myocarditis (Fig 1A). Furthermore, a UMAP projection of the data using the 22 significant features yielded a clear visual distinction between those with and without COVID-19 myocarditis via CMR (Fig 1B).Conclusion:Utilizing ML on serum proteomic screenings of asymptomatic young COVID-19 patients, we can differentiate between those with CMR myocarditis positive and negative patients.

Read More
Novembre 2024

Abstract 4126987: A Case of Recurrent Neurocardiogenic Syncope in a COVID-19 Patient

Circulation, Volume 150, Issue Suppl_1, Page A4126987-A4126987, November 12, 2024. Background:COVID-19 infection has been associated with a broad range of clinical manifestations. There are very few reported cases of COVID-19 patients presenting with syncope as an initial symptom. We present an extraordinary case of recurrent neurocardiogenic syncope in a COVID-19 patient.Case:A 66-year-old male presented after experiencing two episodes of syncope. He denied any prodromal or anginal symptoms. His medications included propranolol 10 mg twice daily for essential tremors. He had no family history of unexplained syncope or sudden cardiac death. He was hemodynamically stable and had one episode of fever at 102°F. Telemetry recording showed vagal-mediated sinus arrest and pauses without escape. Blood work showed normal cell counts, electrolytes, thyroid-stimulating hormone, and erythrocyte sedimentation rate, with a slightly elevated C-reactive protein of 22.2 mg/L. He tested positive for COVID-19 and had negative Lyme and Ehrlichia serologies.Decision Making:Due to symptomatic long sinus pauses, propranolol was discontinued, and he received a temporary pacemaker set at 50 beats per minute (bpm). He had another syncopal episode while being paced at 50 bpm, suggesting a neurocardiogenic mechanism, so the pacing rate was increased to 70 bpm. An echocardiogram showed a normal ejection fraction without any significant valvular disease. The syncope was determined to be vasovagal due to autonomic dysfunction in the setting of COVID-19. After 72 hours without further syncope, the temporary pacemaker was removed, and he was discharged home with an implantable loop recorder (ILR). A one-month follow-up showed no syncope, and ILR interrogation showed no bradycardia or pauses.Conclusion:Neurocardiogenic syncope with prolonged asystole and sinus pauses is an uncommon presentation of COVID-19 infection. The clinical course of autonomic dysfunction following COVID-19 is not very clear, and monitoring with an ILR is reasonable before considering permanent pacemaker implantation.

Read More
Novembre 2024

Abstract 4117883: Long noncoding RNAs and machine learning to improve cardiovascular outcomes of COVID-19

Circulation, Volume 150, Issue Suppl_1, Page A4117883-A4117883, November 12, 2024. Introduction/Background:Cardiovascular symptoms appear in a high proportion of patients in the few months following a severe SARS-CoV-2 infection. Non-invasive methods to predict disease severity could help personalizing healthcare and reducing the occurrence of these symptoms.Research Questions/Hypothesis:We hypothesized that blood long noncoding RNAs (lncRNAs) and machine learning (ML) could help predict COVID-19 severity.Goals/Aims:To develop a model based on lncRNAs and ML for predicting COVID-19 severity.Methods/Approach:Expression data of 2906 lncRNAs were obtained by targeted sequencing in plasma samples collected at baseline from four independent cohorts, totaling 564 COVID-19 patients. Patients were aged 18+ and were recruited from 2020 to 2023 in the PrediCOVID cohort (n=162; Luxembourg), the COVID19_OMICS-COVIRNA cohort (n=100, Italy), the TOCOVID cohort (n=233, Spain), and the MiRCOVID cohort (n=69, Germany). The study complied with the Declaration of Helsinki. Cohorts were approved by ethics committees and patients signed an informed consent.Results/Data:After data curation and pre-processing, 463 complete datasets were included in further analysis, representing 101 severe patients (in-hospital death or ICU admission) and 362 stable patients (no hospital admission or hospital admission but not ICU). Feature selection with Boruta, a random forest-based method, identified age and five lncRNAs (LINC01088-201, FGDP-AS1, LINC01088-209, AKAP13, and a novel lncRNA) associated with disease severity, which were used to build predictive models using six ML algorithms. A naïve Bayes model based on age and five lncRNAs predicted disease severity with an AUC of 0.875 [0.868-0.881] and an accuracy of 0.783 [0.775-0.791].Conclusion:We developed a ML model including age and five lncRNAs predicting COVID-19 severity. This model could help improve patients’ management and cardiovascular outcomes.

Read More
Novembre 2024

Abstract 4146592: Device-Recorded Physical Activity and Atrial Fibrillation Burden: A Natural History Experiment from the COVID-19 Pandemic in the TRIM-AF Clinical Trial

Circulation, Volume 150, Issue Suppl_1, Page A4146592-A4146592, November 12, 2024. Introduction:Low physical activity (PA) has been identified as a risk factor for development of atrial fibrillation (AF). However, the effect of changes in PA on directly recorded AF burden has not been well studied. The COVID-19 pandemic offered an opportunity to observe whether changes in activity were correlated with changes in AF burden. To determine if reduced PA is associated with higher AF burden, we assessed daily PA and AF burden data from patients with cardiac implantable electronic devices (CIEDs) enrolled in a prospective clinical trial, Targeting Risk Interventions and Metformin for Atrial Fibrillation (TRIM-AF, NCT03603912).Methods:Daily AF burden and activity were determined from implantable cardiac devices with atrial leads. The pandemic lockdown period was analyzed for up to 1 year. Pre-pandemic periods were matched by month to pandemic periods. To test the potential confounding of aging, pre-pre-pandemic periods were matched by month to pre-pandemic periods. To reduce the confounding of study interventions, matched periods were taken on one side of the study enrollment date. For PA and AF burden, Gaussian linear mixed models and a Bayesian mixed effect model were fitted and adjusted for age, sex, and device manufacturers. A Gaussian model was used to correlate daily activity minutes and AF%. Time splines were added to adjust for non-linear time effects. Outcomes are reported as mean activity minutes and daily AF%.Results:Comparing Pandemic vs. Pre-periods (N=82 periods; 55 male, 27 female), daily activity minutes decreased by a mean of 13.16±1.06 minutes/day, and daily AF burden increased by 16% [5%-26%]. Comparing Pre vs. Pre-Pre-Pandemic periods (N=60 periods; 41 male, 19 female), mean activity decreased by 2.28±1.13 mins/day, and AF burden increased by 57% [50%-64%]. A significant negative correlation between activity and AF burden was demonstrated (coefficient -2.0, 95% CI -2.4, -1.6). A decrease in 2.0 activity minutes was associated with a 10% increase in AF burden.Conclusions:This natural history analysis of PA and AF burden demonstrated decreases in activity and increases in AF burden with time and the pandemic. Activity and AF burden were significantly negatively correlated.

Read More
Novembre 2024

Abstract 4137534: Troponin Can Predict Late Gadolinium Enhancement on Cardiac MRI in COVID-19 Vaccine-Associated Myocarditis

Circulation, Volume 150, Issue Suppl_1, Page A4137534-A4137534, November 12, 2024. Background/Aim:We previously reported that late gadolinium enhancement (LGE) on cardiac MRI (CMR) was as high as 82% in pediatric patients with COVID-19 vaccine-associated myocarditis (C-VAM) despite mild clinical symptoms and normal left ventricular function. As LGE can be a harbinger for future adverse events including arrhythmias, heart failure or sudden cardiac death, we sought to identify predictors for LGE in C-VAM, specifically assessing troponin as a screening marker for C-VAM patients at risk for myocardial scarring who could then be referred for a confirmatory CMR with LGE.Methods:In this longitudinal multicenter retrospective observational study across 38 U.S. member institutions of theMyocarditisAfterCOVIDVaccination (MACiV) study network, 333 patients with C-VAM based on CDC criteria were included from April 2021 to November 2022. Data collected included demographics, laboratory values, clinical and cardiac imaging characteristics and outcomes. Using logistic regression, troponin levels at presentation were assessed as a log transformed continuous variable and categorized into tertiles.Results:The C-VAM patients were predominantly white (67%) adolescent males (91%, 15.7± 2.8 years). There were 216/333 (65%) patients who had both a reported troponin value and had a CMR. On univariate analysis, elevated troponin increased the probability of having LGE (OR=1.29, 95% CI: 1.06, 1.58, p=0.012). Even after controlling for age, race, sex, number of vaccine doses and left ventricular ejection fraction (OR=1.32, 95% CI: 1.06, 1.65, p=0.013). Patients >15 years compared to those ≤15 years of age were 2.94 (95% CI: 1.28, 6.75, p=0.011) times more likely to have LGE at presentation. Patients with troponin levels in the highest tertile compared to lowest tertile were 2.66 times (95% CI: 1.04, 6.83, p=0.042) more likely to have LGE along with a greater involvement > 4 AHA myocardial segments with LGE (p=0.004)Conclusions:Higher troponin values are associated with presence of late gadolinium enhancement on cardiac MRI in patients with COVID-19 vaccine-associated myocarditis. Troponin levels at presentation may facilitate risk stratification and function as a screening tool to identify those C-VAM patients with the greatest likelihood of myocardial scarring, who may benefit from undergoing CMR for tissue characterization.

Read More
Novembre 2024

Abstract 4141333: Predictors of venous thromboembolism in hospitalized patients with COVID-19

Circulation, Volume 150, Issue Suppl_1, Page A4141333-A4141333, November 12, 2024. Background:COVID-19 is a multiorgan disease characterized by a prothrombotic state and increased risk of venous thromboembolism (VTE), especially in hospitalized patients. Although prior studies have attempted to identify predictors of VTE, restricted sample size and use of administrative claims data have limited such analyses. We conducted a multivariable analysis to identify predictors of VTE in hospitalized patients with COVID-19 in a multicenter patient-level registry.Methods:We utilized data from the CORONA-VTE Network, a US multicenter registry of 10,420 adult (≥18 years) patients with PCR-confirmed COVID-19 of whom 3,844 were hospitalized. The primary outcome was time-to-first-event for a composite of adjudicated pulmonary embolism and deep vein thrombosis (e.g. lower extremity, mesenteric, gonadal vein, etc.) during 90-day follow-up. The candidate variables were selected by a priori clinical consensus. The variables with ≥20% missing data were excluded, whereas those with missing data

Read More
Novembre 2024

Abstract 4142935: Circulating endothelial cells and microthrombosis as markers of vascular dysfunction in Long COVID

Circulation, Volume 150, Issue Suppl_1, Page A4142935-A4142935, November 12, 2024. Background.Post-COVID syndrome is related to a multisystem disorder that affects in part the cardiovascular system. This disease involves symptoms, and conditions that continue or develop after acute COVID-19. SARS-CoV-2 infection of immune and endothelial cells are associated with NETosis, microthrombosis and endothelial dysfunction that could persist several weeks after acute phase of infection. Damaged endothelial cells can expose the vessel pro-coagulant area leading to platelet and neutrophil clumps. Increased levels of circulating endothelial cells (CECs) have been described as biomarkers for cardiovascular diseases. Therefore, we hypothesize that CECs and microthrombosis are potential biomarkers of vascular dysfunction in Long COVID.Methods.A cross-sectional study was conducted at the Miami VA long COVID clinic. Long COVID cases and controls were recruited according to WHO definition for long COVID. A total of 23 patients and 7 controls were included in this study. Blood samples were collected in Heparin and Sodium Citrate tubes. Cell immunophenotyping and NETosis markers (MPO) were quantified on a Cytek Aurora spectral flow cytometer system. Microclots (CD62P+PAC-1+) and platelet response were assessed by flow cytometry and response to Adenosine di-phosphate (ADP), respectively. A ttest was used for statistical analysis. Differences were considered significant when p < 0.05.Results.The age and gender were similar between cases and controls while their symptom score was significantly different. There was a significant increase in the number of CECs (CD31+CD309+CD45-CD133-) in Long COVID cases. MPO expression in neutrophils (CD11b+CD66b+CD15+) and classical monocytes (CD14+CD16-) was significantly higher in Long COVID. Microclots were significantly elevated, and the platelet aggregation response was dysregulated in Long COVID.Conclusions.CECs and microthrombosis including NETosis are present in Long COVID and may serve as potential biomarkers or causative mechanisms for vascular dysfunction.

Read More
Novembre 2024

Abstract 4145299: Myocarditis leading to cardiogenic shock: COVID-19's Cardiac Crisis

Circulation, Volume 150, Issue Suppl_1, Page A4145299-A4145299, November 12, 2024. Background:COVID-19 can present with a wide spectrum of clinical manifestations ranging from asymptomatic to life-threatening. It is often thought of as a primarily pulmonary infection and different systemic presentations are sometimes overlooked. We present a case of COVID-19 induced myocarditis leading to hemodynamic instability and end-organ dysfunction.Case presentation:A 77-year-old male with a history of CKD, paroxysmal atrial fibrillation, and COPD was transferred to our hospital for a higher level of care due to worsening cardiogenic shock. He was cold and wet (Forrester class IV) with a High Sensitivity troponin of 331 and a BNP level of 21,503. EKG showed atrial fibrillation with RVR but no evidence of acute ischemic changes. A TTE was done which revealed an EF of 30-35% and diffuse hypokinesis with regional variation, a significant reduction from an EF of 50-55% just 4 weeks prior. The patient exhibited end-organ dysfunction, as evidenced by deranged liver function tests and a rise in creatinine from a baseline of 2 to 4.6, indicating congestive hepatopathy and cardiorenal syndrome respectively. The patient’s hemodynamics necessitated milrinone and norepinephrine infusions and efforts to wean them off were unsuccessful due to repeated failed fluid bolus challenges. Considering the patient’s clinical picture, there was a strong suspicion of viral-induced cardiomyopathy, and a COVID-19 infection was confirmed by PCR testing; his last COVID-19 booster dose was in 2021. The patient was promptly started on remdesivir and IV steroids. Unfortunately, the patient’s condition continued to deteriorate, and he succumbed to his illness.Discussion:A myriad of cardiovascular manifestations have been implicated with COVID-19, including ACS, myocarditis, and heart failure. Although the exact underlying mechanisms for each of these conditions are unclear, a complex interplay between direct viral injury, systemic inflammation, and cytokine storm has been hypothesized. Our case illustrates the quick progression of heart failure into cardiogenic shock requiring pressor support, with subsequent rapid decompensation rendering CMR, cardiac catheterization, and biopsy timely impractical. It serves as a reminder to explore COVID-19 as a potential cause of biventricular failure in individuals with no evident reason and rapid clinical deterioration, particularly as early initiation of antiviral therapy could improve prognoses.

Read More
Novembre 2024

Abstract 4140179: Impact of COVID-19 on Patients With Hypertrophic Cardiomyopathy: Causes, Predictors, and Inpatient Mortality of 30-Day Readmission

Circulation, Volume 150, Issue Suppl_1, Page A4140179-A4140179, November 12, 2024. Background:COVID-19 has led to significant global morbidity and mortality. Its impact on patients with hypertrophic cardiomyopathy (HCM) remains unclear.Aim:To evaluate the impact of COVID-19 infection on the readmission rate and associated outcomes in patients with HCM.Methods:In a retrospective study using the 2020 National Readmission Database, we collected data on patients with HCM who were admitted with the principal diagnosis of COVID-19. The primary outcome was the all-cause 30-day readmission rate. Secondary outcomes were common causes of readmission, in-hospital mortality, and resource utilization.Results:In 2020, a total of 1503 patients with HCM (mean age 67 years, 49% female) were hospitalized for COVID-19. Among them, 1216 (80.9%) were discharged alive and 180 (14.8%) were readmitted within 30 days. In-hospital mortality for readmissions remained relatively unchanged compared with index admissions (15.4% vs 19.0%, P=.34; Table 1). The most common cause of readmission was COVID-19 infection (38%), followed by other infections (11%) and acute kidney injury (4%). The most common cardiac cause for readmission was paroxysmal atrial fibrillation (2%). The mean length of stay for readmissions was relatively similar to the index admission (7.8 vs 9.9 days, P=.43). The mean hospital charge associated with readmission was $84,976 (total hospital charges were $15.2 million). The mean hospital cost associated with readmissions was $24,603 (total hospital costs were $4.4 million). A higher Charlson comorbidity index score was the main independent predictor of higher readmission rates.Conclusions:This study highlights the significant burden of COVID-19 on patients with HCM. Despite efforts to reduce readmission rates, a considerable percentage of patients experienced readmission within 30 days, largely attributed to COVID-19 infection. Close follow-up after discharge could prevent such readmission and the associated high mortality rates.

Read More
Novembre 2024

Abstract 4145229: Outcomes among hospitalized patients with stress-induced cardiomyopathy and concomitant Coronavirus Disease 2019 (COVID-19) infection: Insight from the US National Inpatient Sample

Circulation, Volume 150, Issue Suppl_1, Page A4145229-A4145229, November 12, 2024. Background:Stress-induced cardiomyopathy (CM) is a form of acute transient left ventricular dysfunction triggered by underlying physiological stress which often leads to increased morbidity and mortality. Coronavirus disease 2019 (COVID-19) is thought to cause stress-induced CM due to overwhelming systemic inflammation. There is paucity of data regarding the impact of COVID-19 on in-hospital outcomes of patients with stress-induced CM. The purpose of this study is to investigate in-hospital outcomes, including mortality and cardiogenic shock, of patients with concomitant COVID-19 and stress-induced CM.Methods:We queried the 2020 USA National Inpatient Sample (NIS) Database in conducting this retrospective cohort study. We identified hospitalized adult patients ≥ 18 years old with stress-induced CM and concomitant COVID-19 using ICD-10 CM codes. We used a survey multivariable logistic and linear regression analysis to calculate adjusted odds ratios (aORs) for outcomes of interest. A p value of

Read More
Novembre 2024

Abstract 4140201: Disparities in Defibrillator Implantations during COVID-19: Insights from the NCDR registry

Circulation, Volume 150, Issue Suppl_1, Page A4140201-A4140201, November 12, 2024. Introduction:While implantable cardiac defibrillators (ICD) decrease sudden cardiac death, disparities in ICD use remain. The COVID-19 pandemic created strains on the US healthcare system that may have exacerbated these disparities.Methods:Using the US NCDR registry of primary and secondary prevention ICD implants, we compared sex, racial and ethnic disparities for 239,014 patients, aged 19-90 years, grouped into three time intervals from 2016 to 2022: Pre-COVID, COVID and Post-COVID. Centers without consistent reporting were excluded, as were patients with incomplete sex, race or ethnicity data. ICD implantation rates were compared using a Poisson regression model with interaction tests for sex, race and ethnicity by time window to see if disparities changed within this period. Implant rates by indication were also assessed.Results:Overall ICD implants decreased over the study period (Figure 1) with an average monthly rate of 3271 in the first three months of 2016 declining to 2334 in the last three months of 2022 (p=0.017). Disparities in ICD implantation for women, racial and ethnic minorities were observed pre-COVID and persisted (Table 1). Average ICD implant rates during these time periods varied by race with predominance in White patients. While gaps in ICD implant persisted, the disparities did not worsen during COVID-19 by sex, race or ethnicity (p-value for interactions were 0.79; 0.47; and 0.095, respectively). There was a more significant decrease in primary prevention ICD compared to secondary prevention ICD (p

Read More
Novembre 2024