Abstract 4147650: Right Ventricular Hemodynamics in Patients Screened for HFpEF with a Novel Artificial Intelligence Screening Tool

Circulation, Volume 150, Issue Suppl_1, Page A4147650-A4147650, November 12, 2024. Background:Invasive hemodynamics are the gold standard for diagnosis of heart failure with preserved ejection fraction (HFpEF). A novel, FDA-approved artificial intelligence (AI) technology that uses a single, 4-chamber transthoracic echocardiogram (TTE) image to screen patients for HFpEF shows promise as a non-invasive tool to assist in diagnosis. Development of right ventricular (RV) dysfunction is a sign of a more advanced HFpEF. Advanced RV hemodynamic parameters, beyond pulmonary arterial pressures (PAP), have not been well studied in HFpEF. We sought to correlate advanced RV hemodynamic parameters in patients screened for HFpEF with this AI screening tool.Method:We retrospectively evaluated two cohorts of patients with suspected HFpEF that underwent TTE and RHC at our institution. The most recent TTE for each patient was screened using the AI-based analysis tool and was reported as either “suggestive” or “non-suggestive” of HFpEF – labeled as “positive” or “negative,” respectively. Mean PAP, pulmonary vascular resistance (PVR), pulmonary artery pulsatility index (PAPI), RV cardiac power output (RV-CPO), RV myocardial performance score (RV-MPS), and right atrial pressure to pulmonary capillary wedge pressure ratio (RA:PCWP) were calculated using invasive hemodynamic parameters at rest, and exercise when available. RV-CPO was calculated as [(mean PAP-RAP) x cardiac output] /451, and RV-MPS was calculated as (RV-CPO x PAP)x1.5. Median values were calculated. AI positive and negative groups were compared using Student’s t-test.Results:A total of 47 patients (82% women, 79% Black, average EF 62%) were included, with 23 undergoing subsequent exercise RHC. There were 18 (38%) that screened positive for HFpEF, and 29 (62%) screened negative by TTE AI software. Positive patients had a significantly higher mean PAP (median 31 vs 23 mmHg, p=0.01), PVR (2.1 vs 1.3 WU, p=0.02), and RV-CPO (0.26 vs. 0.17, p=0.04) than patients who were screened negative. There were no significant differences in PAPI, RV-MPS, and RA:PCWP at rest. There were no significant differences in mean PAP, PVR, PAPI RV-CPO, RV-MPS, or RA:PCWP with exercise.Conclusion:Patients screened positive for HFpEF by a novel AI TTE software had significantly higher PAP and RV-CPO at rest, but no differences in PAPI, RV-MPS, or RA:PCWP ratio. This tool may help identify more advanced HFpEF.

Read More
Novembre 2024

Abstract 4131439: Routine Social Isolation Screening Among Adults with Cardiovascular Disease: A Survival Analysis

Circulation, Volume 150, Issue Suppl_1, Page A4131439-A4131439, November 12, 2024. Background:Evidence linking social isolation to cardiovascular disease morbidity and mortality has grown in recent years. Still, information on how this may manifest in real world settings and its implications for screening practices is limited. In 2019, our large national integrated health care system implemented screening for social isolation as part of a broader universal social risk assessment. This repository of screening data was joined to administrative claims to test these associations in real world data and explore differences by demographic and medical factors.Methods:Social isolation responses recorded from 2019-2022 were included for a cohort of adult health plan members with documented atherosclerotic cardiovascular disease (ASCVD). We selected a single random assessment for each member and retained any other responses for sensitivity analyses. Cohort members had at least 10 months of enrollment surrounding assessment date for use as the baseline period and were followed for 365 days. We used cox proportional hazards regression with right censoring for coverage gaps to estimate the risk of all-cause mortality conferred by social isolation. We used Poisson regression to model the rate of inpatient stays.Results:There were 881 deaths among 7,484 members (18% of those with social isolation; 11% of those without). The isolated group skewed less male (54% vs. 65%, p

Read More
Novembre 2024

Abstract 4145962: Evaluating a Single-Lead, Mobile Electrocardiogram for Screening of Atrial Fibrillation in Patients with Obstructive Sleep Apnea

Circulation, Volume 150, Issue Suppl_1, Page A4145962-A4145962, November 12, 2024. Introduction:Obstructive sleep apnea (OSA) affects nearly a billion adults worldwide, and is associated with an increased risk of coronary artery disease, heart attack, heart failure, and arrhythmias – notably atrial fibrillation (AF). Low cost, point of care mobile electrocardiograms (MobileECGs) record and detect heart rhythm abnormalities in 30 seconds. This study aims to assess the effectiveness of the KardiaMobile (AliveCor) MobileECG device as an AF screen in the OSA patient population.Methods:The MobileECG Sleep Study enrolled 500 adult University of Florida Health patients in an observational study between March 2021 and March 2024. After providing consent and completing a brief survey regarding pre-existing health conditions and overall sleep health, a trained research assistant performed the AF screening with the KardiaMobile ECG device. ECG readings were marked for previously undetected abnormalities (potential AF, tachycardia, bradycardia, etc.) and statistically analyzed to determine stroke risk using the CHA2DS2-VASc scoring system. CHA2DS2-VASc criteria includes congestive heart failure, hypertension, age ≥75 (doubled), diabetes, stroke (doubled), vascular disease, age 65 to 74 and sex category (female).Results:A total of 500 participants were enrolled over a 3 year period at University of Florida Health Sleep Center. Of which 276 (55.2%) were female and 224 (44.8%) were male, with a mean age of 56.34 (SD 15.74) and a mean weight of 222.50 (SD 63.25). Of those tested, 68 (13.6%) had irregular, previously undetected AF readings. Patients with irregular AF readings using the KardiaMobile ECG device had CHA2DS2-VASc scores of t(68) = 2.15, p = .042, d = 0.26 indicating an intermediate risk for stroke. Oral anticoagulation is recommended for a score of ≥ 2 if the patient has no contraindication. After prior 12-lead ECG data for patients is obtained the determinations will be compared to the KardiaMobile ECG readings using Cohen’s Kappa.Conclusion:MobileECGs offer a rapid, point of care screening tool for AF in an outpatient sleep clinic setting. Early detection of AF in the OSA patient population can result in improved outcomes and reduced instances of stroke events through anticoagulation therapy guided by CHA2DS2-VASc scores. Further research is necessary to understand the long term impact of surveillance AF screening in high risk patient populations on mortality and cost of healthcare.

Read More
Novembre 2024

Abstract 4145119: Implementation and Evaluation of a Life’s Essential 8 Risk Factor Screening Tool in a Public HIV Clinic in Tanzania

Circulation, Volume 150, Issue Suppl_1, Page A4145119-A4145119, November 12, 2024. Background:The burden of cardiovascular disease (CVD) is increasing among people with HIV (PWH) in sub-Saharan Africa. Integrating CVD screening into routine HIV care represents an opportunity to diagnose CVD at an earlier stage in a potentially high-risk population.Research questionsIs integrating CVD risk factor screening feasible and sustainable in a public HIV clinic in Mwanza, Tanzania? What is the magnitude of CVD risk of the general adult PWH population? What is the unmet need for blood pressure (BP) and diabetes management?Methods:We adapted the AHA Life’s Essential 8 (LE8) into a rapid questionnaire that was administered to every PWH in a large public adult HIV clinic. Questions included demographics; LE8 risk factors (BMI, diet, physical activity, sleep, and smoking); and the hypertension and diabetes continuum of care. Every patient had their BP measured; BP was measured two additional times for those with an initial BP >140/90 mmHg. We administered random blood glucose screening to anyone with a high BP, obese BMI, current smoking, or history of diabetes. Implementation and effectiveness were evaluated using the RE-AIM framework.Results:In 3 months, 1072 PWH were screened at least once. Mean age was 50 years and 72% were female. On average, PWH had a nutritious diet and received adequate physical activity per AHA guidelines. The prevalence of hypertension was 34%; the continuum of care is shown in Figure 1. Of those screened, 21% had diabetes or pre-diabetes. Evaluation via the RE-AIM framework is shown in Table 1. Successes included the reach and effectiveness of screening in only 3 months. Adoption was the biggest challenge due to staffing and supply constraints. The intervention was feasible, implemented with fidelity, and is ongoing.Conclusions:Integrating CVD risk screening into routine HIV care in a busy Tanzanian clinic was feasible and demonstrated a high magnitude of undiagnosed and untreated hypertension among the general PWH population.

Read More
Novembre 2024

Abstract 4115235: Disparities in Youth Cardiac Screening by Childhood Opportunity Index: Insights from the Heartbytes Database

Circulation, Volume 150, Issue Suppl_1, Page A4115235-A4115235, November 12, 2024. Intro:The AHA endorses screening youth athletes to identify risk for sudden cardiac arrest (SCA). Rates of SCA can be predicted by social determinants of health (SDOH) such as education level and proportion of Black residents in ZIP Code. The Child Opportunity Index (COI) quantifies neighborhood factors that influence health and development. The link between COI and youth cardiac screening findings and outcomes remains unclear.Hypothesis:Cardiac screening data will differ significantly by COI.Aims:To identify differences in cardiac screening data in children of varying COI.Methods:The HeartBytes Database, including sports exams, self-reported physical activity (PA), and zip codes from Simon’s Heart screenings was augmented with COI index zip code data. Chi-squared and logistic regression were used to analyze demographics, cardiac risk factors, and screening results.Data:Screening data of 11,431 youth athletes (median age 14.3 (IQR = 3), BMI 20.6 (4.8), 53.7% male, 70.6% White) was analyzed. The majority of children had very high overall COI (Figure 1). Hypertension, hyperlipidemia, Kawasaki disease, and heart infection were similar across COI levels (p > 0.05). Levels of physical activity varied significantly across levels of overall COI, with the highest levels reported in the lowest COI group (50.4% with >10 hours PA/week) (Chi-Squared; p = 0.007). Positive screening rates varied significantly by level of COI (p = 0.013) (Figure 2). The overall level of education, health environment, and socioeconomic COI did not predict positive screening outcomes in logistic regression analysis (all p >0.05).Conclusion:Prevalence of cardiac risk factors did not vary significantly across COI levels, however, positive screening rates were highest in moderate and very low COI levels. Simon’s Heart engaged communities across the COI spectrum; however, a majority of children had high or very high COI. Further efforts are needed to expand access to underserved populations of lower COI.

Read More
Novembre 2024

Abstract 4137945: A Tuscany regional screening program for juvenile sudden cardiac death in high schools: the JUST project

Circulation, Volume 150, Issue Suppl_1, Page A4137945-A4137945, November 12, 2024. Background:Juvenile sudden cardiac death (SCD) has high impact on the family and society of the victim. While SCD screening programmes are effective in athletes, most (70-80%) young non-athletes individuals are not routinely screened.Research question:We hypothesized that a low-cost screening program may early identify subjects at risk of juvenile SCD, even in non-athletes.Goals:To evaluate the prevalence of SCD-related abnormal findings and, ultimately, to test the effectiveness of a screening programme in high schools.Methods:Between April 2023 and June 2024, high school individuals were enrolled in a screening programme in Tuscany (Pisa, Lucca and Livorno), based on a questionnaire investigating family history of juvenile SCD or diseases predisposing to SCD and symptoms (syncope, palpitations, chest pain), and digitally recorded electrocardiograms (ECGs). In case of abnormal findings, second-line investigations locally (echocardiography, Holter ECG monitoring and/or exercise testing) or third-line investigations at Fondazione Monasterio, Pisa, Italy (cardiac MRI, genetics or electrophysiological testing) were planned. Only preliminary results of the first-line screening are hereby reported.Results:We have currently enrolled 872 individuals (age 17.1±1.8 years, 481 [55%] males, 288 [33%] smokers, 102 [11.7%] recreational drugs users, and 645 [74%] non-competitive athletes). At questionnaires, 56 individuals (6.4%) had a family history of SCD, 32 (3.7%) a first-degree relative with cardiomyopathy, and 13 (1.5%) with channelopathy. As for symptoms, 21 participants (2.4%) reported chest pain or 26 (3%) syncope during exertion, while 90 (10.3%) paroxysmal palpitations. At ECG, we found 2 cases (0.2%) with a type-2 Brugada pattern, 1 female case (0.1%) with prolonged QTc interval (QTc 480 ms), 20 cases (2.3%) with V1-V3 T wave inversion (age > 16 years), 18 cases (2%) of left ventricular hypertrophy (non-athletes), and 4 cases (0.5%) with atypical ventricular ectopy. After the first-line screening, 61 (7%) and 10 (1.2%) individuals were referred to second and third-line investigations, which are currently ongoing.Conclusions:We hereby propose a screening model in high schools that includes specific health questionnaires and digitally recorded ECGs. From preliminary analyses, this approach seems sensitive enough to be tested as a model to favour the early diagnosis of diseased conditions associated with juvenile SCD in the general population.

Read More
Novembre 2024

Abstract 4141112: Identifying Gaps in Screening&Treatment for Peripheral Artery Disease (Pad): A Survey on Provider Knowledge, Attitudes, and Practices

Circulation, Volume 150, Issue Suppl_1, Page A4141112-A4141112, November 12, 2024. Background:It is estimated that Peripheral Artery Disease (PAD) affects between 8.5 and 12 million Americans and its prevalence among adults over 40 years of age is increasing. PAD disproportionately affects Black Americans who, at any age, are twice as likely to experience PAD as their white counterparts but are less likely to be screened and benefit from early diagnosis and treatment.Research Questions/Hypothesis:Despite the high prevalence of PAD and the importance of early intervention, screening for PAD remains limited and/or underutilized particularly in primary care settings where most cases of PAD can be identified. This study sought to understand provider knowledge of PAD, associated risk factors, treatment, understanding of disparities in PAD and barriers and facilitators of PAD screening. It was hypothesized that limited resources, lack of awareness on the part of providers and patients, limitations of training in vascular medicine, and other issues are contributing to PAD morbidity and mortality, particularly among Black and Hispanic populations.Methods:Because no current PAD survey was found in the literature, a survey for providers to determine their knowledge, attitude, and beliefs about PAD and the importance and process of PAD screening for patients at risk was developed. The survey was administered to CommonSpirit Health providers in Sacramento, CA between December 2023- January 2024. Specialties engaged in the survey (N=145) included primary care, endocrine, nephrology, cardiology and podiatry providers.Results:Response rate was 21%. Of those responding, primary care was the specialty most represented(69%). A total of 65% of respondents identified medical treatment of risk factors as the primary way to treat PAD, 32% rated their knowledge of risk reduction therapies in PAD as below average, and 88% of respondents were either somewhat or not familiar with racial disparities in PAD. 24% of respondents identified the ‘lack of knowledge of PAD management guidelines’ as the most important barrier to their patients with PAD not receiving risk reduction therapies.Conclusions:Initial survey of providers identifies lack of knowledge as a key indicator of PAD screening practices, including knowledge on racial disparities in PAD. These identified gaps can inform targeted interventions to improve screening, early detection and treatment of PAD.

Read More
Novembre 2024

Abstract 4144283: A Novel EMR-Based Algorithm with the Virtual Echocardiography Screening Tool (VEST) to Screen Patients for Pulmonary Arterial Hypertension

Circulation, Volume 150, Issue Suppl_1, Page A4144283-A4144283, November 12, 2024. Introduction:Pulmonary arterial hypertension (PAH) remains an underrecognized, fatal disease. Limited awareness, non-specific symptoms, and late referral to accredited PH centers all contribute to an overall poor prognosis. The previously validated Virtual Echocardiography Screening Tool (VEST) uses 3 routine transthoracic echocardiogram (TTE) parameters (left atrial size, transmitral E:e’ and systolic interventricular septal flattening) to recognize a high PAH likelihood. A positive VEST score has been shown to have 80% sensitivity and 76% specificity for PAH hemodynamics, while a VEST score of +3 has 92.7% specificity for PAH hemodynamics with a positive predictive value of 88.0%.Aim:We aimed to implement a novel algorithm via our electronic medical record (EMR) as an automated VEST calculator to identify patients with a high likelihood of PAH.Methods:An automated EMR VEST calculator was applied retrospectively to 4,952 patients who underwent TTE with TR velocity >/= 2.9 m/s at an accredited PH center from 12/2021-8/2023. Automated EMR VEST scores were validated by comparison to 60 manually scored echocardiograms. Those with VEST score of +3 (highest risk for PAH) underwent chart review to identify whether they were seen by a PH specialist.Results:There was 100% correlation between the automated EMR VEST scores and the manual results.Of the 4,952 patients, 1,655 had a positive automated EMR VEST score, and 355 had a score of +3, predicting the highest likelihood of PAH and warranting urgent referral to an accredited PH center. Of those patients with a +3 score, 103 (29.0%) were never seen by a PH specialist (Fig 1).Conclusion:VEST is a validated, noninvasive and accessible screening tool for identification of patients with a high likelihood of PAH likely to benefit from early referral to a PH center. We present a novel, accurate, and automated EMR algorithm for determination of the VEST score to prompt urgent referral for PH expert evaluation and timely initiation of complex medical therapies. These findings highlight the potential of future artificial intelligence and machine-learning applications for improved recognition of life-threatening PAH.

Read More
Novembre 2024

Abstract 4144083: AI-CVD: Artificial Intelligence-Enabled Opportunistic Screening of Coronary Artery Calcium Computed Tomography Scans for Predicting CVD Events and All-Cause Mortality: The Multi-Ethnic Study of Atherosclerosis (MESA)

Circulation, Volume 150, Issue Suppl_1, Page A4144083-A4144083, November 12, 2024. Background:The AI-CVD initiative aims to extract all useful opportunistic screening information from coronary artery calcium (CAC) scans and combines them with traditional risk factors to create a stronger predictor of cardiovascular diseases (CVD). These measurements include cardiac chambers volumes (left atrium (LA), left ventricle (LV), right atrium (RA), right ventricle (RV), and left ventricular mass (LVM)), aortic wall and valvular calcification, aorta and pulmonary artery volumes, torso visceral fat, emphysema score, thoracic bone mineral density, and fatty liver score. We have previously reported that the automated cardiac chambers volumetry component of AI-CVD predicts incident atrial fibrillation (AF), heart failure (HF), and stroke in the Multi-Ethnic Study of Atherosclerosis (MESA). In this report, we examine the contribution of other AI-CVD components for all coronary heart disease (CHD), AF, HF, stroke plus transient ischemic attack (TIA), all-CVD, and all-cause mortality.Methods:We applied AI-CVD to CAC scans of 5830 individuals (52.2% women, age 61.7±10.2 years) without known CVD that were previously obtained for CAC scoring at MESA baseline examination. We used 10-year outcomes data and assessed hazard ratios for AI-CVD components plus CAC score and known CVD risk factors (age, sex, diabetes, smoking, LDL-C, HDL-C, systolic and diastolic blood pressure, hypertension medication). AI-CVD predictors were modeled per standard deviation (SD) increase using Cox proportional hazards regression.Results:Over 10 years of follow-up, 1058 CVD (550 AF, 198 HF, 163 stroke, 389 CHD) and 628 all-cause mortality events accrued with some cases having multiple events. Among AI-CVD components, CAC score and chamber volumes were the strongest predictors of different outcomes. Expectedly, age was the strongest predictor for all outcomes except HF where LV volume and LV mass were stronger predictors than age. Figure 1 shows contribution of each predictor for various outcomes.Conclusion:AI-enabled opportunistic screening of useful information in CAC scans contributes substantially to CVD and total mortality prediction independently of CAC score and CVD risk factors. Further studies are warranted to evaluate the clinical utility of AI-CVD.

Read More
Novembre 2024

Abstract 4124675: Deep Learning Screening of Cardiac MRIs Uncovers Undiagnosed Hypertrophic Cardiomyopathy in the UK BioBank

Circulation, Volume 150, Issue Suppl_1, Page A4124675-A4124675, November 12, 2024. Introduction:The prevalence of hypertrophic cardiomyopathy (HCM) in the UK Biobank based on ICD-10 codes (.07%) is lower than global estimates of disease prevalence (0.2 – 0.5%). Prior studies using this data have remarked on the limitations of findings given likely underdiagnosis. The availability of cardiac MRI scans on a fraction of the participants offers an opportunity to identify missed diagnoses.Aims:This study seeks to utilize a generalizable deep learning model to detect likely cases of undiagnosed hypertrophic cardiomyopathy from cardiac MRIs in the UK Biobank.Methods:The foundational model was trained on a multi-institutional dataset of 14,073 cardiac MRIs via a self-supervised contrastive learning approach that sought to minimize the divergence between scans and their associated radiology reports. The pre-trained model was fine-tuned to diagnose hypertrophic cardiomyopathy on a distinct cohort of 4,870 MRIs with 368 cases of HCM, achieving an AUC of 0.94. The fine-tuned model was applied to the UK Biobank cardiac MRI dataset to ascertain predicted probabilities of HCM. Cases exceeding a threshold of 95% – correlating to the top 0.5% of cases (expected specificity of 97% and sensitivity of 60%) – were screened in for manual reading. In a blinded fashion, a board-certified radiologist was tasked with diagnosing HCM on a sample of cases composed of high and low predicted probabilities.Results:Of the 43,017 patients with cardiac MRIs, only 9 (.02%) had an ICD diagnosis of HCM. 266 cardiac MRIs were manually reviewed: 216 had greater than 95% predicted probability of HCM; 50 negative controls were randomly selected amongst cases with predicted probability less than 10%. The radiologist concurred with an HCM diagnosis for 115 cases (sensitivity 53%, specificity 98%), 112 of which were previously undiagnosed. The prevalence of hypertension and aortic stenosis did not significantly differ between the cohort of true positives (69.2%) and false positives (76.6%). The corrected prevalence of HCM in the UK BioBank MRI cohort is estimated at 0.28%.Conclusions:The findings of this study illustrate the remarkable ability of a generalizable deep learning model to detect undiagnosed cases of a rare disease process from cardiac MRIs. This is an important milestone that may allow for widespread screening of hypertrophic cardiomyopathy while minimizing demand for radiologist labor, and thereby allow patients to reap the substantial benefits of earlier treatment.

Read More
Novembre 2024

Abstract 4145524: Artificial Intelligence-Based Screening for Blood Pressure Phenotypes of White-coat and Masked Hypertension in Outpatient Settings

Circulation, Volume 150, Issue Suppl_1, Page A4145524-A4145524, November 12, 2024. Introduction:White-coat hypertension (WCH) and masked hypertension (MH) complicate accurate blood pressure (BP) monitoring. While ambulatory BP monitoring (ABPM) is effective, its high cost and limited availability are significant barriers.Hypothesis:We hypothesized that a machine learning (ML) model using clinical data from a single outpatient visit could accurately predict WCH and MH.Aims:This study aimed to develop and validate ML-based prediction models for WCH and MH using accessible clinical data to improve diagnostic efficiency and accessibility.Methods:We enrolled patients from two hypertension cohorts, after excluding those with incomplete data. Patients were classified by office BP and ABPM readings per American Heart Association guidelines. ML models, including Multi-layer Perceptron (MLP), Support Vector Machine (SVM), and Tabular Prior-Data Fitted Network (Tab-PFN), were developed. Input parameters included demographic data (age, gender, height, weight, smoker), and office BP (OBP) and heart rate measurements. Principal Component Analysis (PCA), kernel PCA (kPCA), or t-distributed stochastic neighbor embedding (t-SNE) were used to improve class separability.Results:The study population comprised 1481 participants with a mean age of 47.6 years (SD 13.6), 65% of whom were male and 20.1% were smokers. OBP measurements showed a mean systolic BP (SBP) of 128.7 mmHg (SD 15.4) and a mean diastolic BP (DBP) of 84.2 mmHg (SD 11.6). ABPM showed a mean 24-hour systolic BP of 122.5 mmHg (SD 11.8) and diastolic BP of 79.3 mmHg (SD 10.1). The inclusion of demographic and OBP data, along with advanced resampling and dimensionality reduction techniques, significantly improved the model’s predictive ability. The final TabPFN model achieved the best performance with recall, precision, F1 score, and accuracy of 0.747, 0.931, 0.829, and 0.807 for WCH, and 0.713, 0.954, 0.816, and 0.907 for MH.Conclusion:Our ML-based model effectively predicts WCH and MH using accessible clinical data, offering a cost-effective alternative before applying ABPM.

Read More
Novembre 2024

Abstract 4131622: Opportunistic Screening of Chronic Liver Disease With Deep Learning Enhanced Echocardiography

Circulation, Volume 150, Issue Suppl_1, Page A4131622-A4131622, November 12, 2024. Introduction:Chronic liver disease affects more than 1.5 billion adults worldwide, but the majority of cases are asymptomatic and undiagnosed. Echocardiography is broadly performed and visualizes the liver; however, this information is not diagnostically leveraged.Hypothesis and Aims:We hypothesized that a deep-learning algorithm can detect chronic liver diseases using subcostal echocardiography images that contains hepatic tissue. To develop and evaluate a deep learning algorithm on subcostal echocardiography videos to enable opportunistic screening for chronic liver disease.Methods:We identified adult patients who received echocardiography and abdominal imaging (either abdominal ultrasound or abdominal magnetic resonance imaging) with ≤30 days between tests. A convolutional neural network pipeline was developed to predict the presence of cirrhosis or steatotic liver disease (SLD) using echocardiogram images. The model performance was evaluated in a held-out test dataset, dataset in which diagnosis was made by magnetic resonance imaging, and external dataset.Results:A total of 2,083,932 echocardiography videos (51,608 studies) from Cedars-Sinai Medical Center (CSMC) were used to develop EchoNet-Liver, an automated pipeline that identifies high quality subcostal images from echocardiogram studies and detects presence of cirrhosis or SLD. In a total of 11,419 quality-controlled subcostal videos from 4,849 patients, a chronic liver disease detection model was able to detect the presence of cirrhosis with an AUC of 0.837 (0.789 – 0.880) and SLD with an AUC of 0.799 (0.758 – 0.837). In a separate test cohort with paired abdominal MRIs, cirrhosis was detected with an AUC of 0.726 (0.659-0.790) compared to MR elastography and SLD was detected with an AUC of 0.704 (0.689-0.718). In the external test cohort of 66 patients (n = 130 videos), the model detected cirrhosis with an AUC of 0.830 (0.738 – 0.909) and SLD with an AUC of 0.768 (0.652 – 0.875).Conclusions:Deep learning assessment of clinically indicated echocardiography enables opportunistic screening of SLD and cirrhosis. Application of this algorithm may identify patients who may benefit from further diagnostic testing and treatment for hepatic disease.

Read More
Novembre 2024

Abstract 4141994: Targeted Atrial Fibrillation Screening in Older Adults: A Secondary Analysis of the VITAL-AF Trial

Circulation, Volume 150, Issue Suppl_1, Page A4141994-A4141994, November 12, 2024. Background:Screening trials for atrial fibrillation (AF) have produced mixed results; however, it is unclear if there is a subset of individuals for whom screening would be effective. Identifying such a subgroup would support targeted screening.Methods:We conducted a secondary analysis of VITAL-AF (NCT03515057), a randomized trial of one-time, single-lead ECG screening during primary care visits. We tested two approaches to identify a subgroup that would benefit from screening (i.e., heterogenous screening effects). First, we use a potential outcomes framework to develop an effect-based model. Specifically, we predicted the likelihood of AF diagnosis under both screening and usual care conditions using LASSO, a penalized regression method. The difference between these probabilities was the predicted screening effect. Second, we used the CHARGE-AF score, a validated AF risk model. We used interaction testing to determine if the observed diagnosis rates in the screening and control arms were statistically different when stratified by decile of the predicted screening effect and predicted AF risk.Results:Baseline characteristics were similar between the screening (n=15187) and usual care (n=15078) groups (mean age 74 years, 59% female). On average, screening did not significantly increase the AF diagnosis rate (2.55 vs. 2.30 per 100 person-years, rate difference 0.24, 95%CI -0.18 to 0.67). Patients in the highest decile of predicted screening efficacy (n=3026, 10%) experienced a large and statistically significant increase in AF diagnosis rates due to screening (6.5 vs. 3.06 per 100 person-years, rate difference 3.45, 95%CI 1.62 to 5.28; interaction p-value 0.038) (Figure 1). In this group, the mean age was 84 years and 68% were female. Participants in the highest decile of AF risk using the CHARGE-AF score did not have a statistically significant increase in AF diagnosis rates due to screening (Figure 2). Predicted screening effectiveness and predicted AF risk were poorly correlated (Spearman coefficient 0.13).Conclusions:One-time screening may increase AF diagnoses in a subgroup of older adults with the largest predicted screening effect. In contrast, predicted AF risk was a poor proxy for predicted screening efficacy. These data caution against the assumption that high AF risk is necessarily correlated with high screening efficacy. Prospective studies are needed to validate whether AF screening is effective in the subgroup identified in this study.

Read More
Novembre 2024

Abstract 4140494: Postpartum linkage to primary care: Does screening for social needs identify those at risk for loss to follow-up?

Circulation, Volume 150, Issue Suppl_1, Page A4140494-A4140494, November 12, 2024. Background:Primary care after pregnancy is recommended, especially for individuals with recent adverse pregnancy outcomes (APOs, such as preeclampsia or gestational diabetes), who are at increased risk for future heart disease. Health-related social needs (HRSNs) are recognized barriers to care, yet their pregnancy-related prevalence and associations with care are unknown. We sought to (1) describe the pregnancy-related prevalence of HRSNs, and (2) assess associations between pregnancy-related HRSNs and subsequent linkage to primary care.Methods:We analyzed electronic health record data for individuals with prenatal care and delivery (2018-2021) at our urban safety-net hospital. HRSNs were assessed via a routine screener, and we summarized individual responses during pregnancy through 6 weeks post partum as: any positive, all negative, or never screened. Postpartum linkage to primary care was defined as a completed primary care visit after 6 weeks through 1 year post partum. We analyzed the prevalence of HRSNs and their associations with linkage to primary care, using adjusted log-linked binomial regression models. In stratified models we assessed for effect modification by APO history and other variables.Results:Of 4941 individuals in our sample, 53% identified as Black non-Hispanic and 21% as Hispanic, 68% were publicly insured, and 93% completed ≥1 HRSN screening. Nearly 1 in 4 screened positive for any HRSN, most often food insecurity (14%) or housing instability (12%), and 53% linked to primary care. Compared with those who screened negative for all HRSNs (n=3491), linkage to primary care was similar among those who screened positive for any HRSNs (n=1079; adjusted risk ratio, aRR 1.04, 95% confidence interval, CI: 0.98-1.10) and lower among those never screened (n=371; aRR 0.77, 95% CI: 0.68-0.86). We found no evidence of effect modification by APO history, race/ethnicity, insurance, language, or Covid-19 pandemic exposure.Conclusions:In this diverse postpartum sample, we identified a 24% prevalence of pregnancy-related HRSNs and 53% subsequent linkage to primary care. Linkage to primary care was not associated with HRSN screening result (positive versus negative) but was significantly negatively associated with being missed by HRSN screening. Further research is needed to better understand HRSN screening practices and who is missed by screening, and to identify modifiable barriers to postpartum primary care especially after APOs.

Read More
Novembre 2024

Abstract 4147292: An ECG-based Heart Failure Screening Tool for People with Sickle Cell Disease

Circulation, Volume 150, Issue Suppl_1, Page A4147292-A4147292, November 12, 2024. Background:Tissue hypoxia and chronic anemia associated with sickle cell disease (SCD) leads to structural and physiological alterations in the heart. Early detection of heart failure (HF) in patients with SCD can assist with timely interventions, but current methods (e.g., echocardiogram and heart MRI) are not easily accessible in resource-deprived settings. The integration of artificial intelligence (AI)-powered tools utilizing low-cost ECG data to increase the power to detect more patients eligible for early treatment, thus improving patient outcomes, and needs to be validated.Hypothesis:We hypothesize that ECG-AI models developed to detect incident HF in the general population can detect HF in SCD patients.Methods/Approach:We previously developed an ECG-AI model employing convolutional neural networks to classify patients with HF using a large ECG-repository at Wake Forest Baptist Health (WFBH). This model was developed using 1,078,198 digital ECGs from 165,243 patients, 73% White, 19% Black, and 52% female individuals, with a mean age (SD) of 58 (15) years. The hold-out AUC of this previous model in distinguishing ECGs of HF patients from controls was 0.87. In this study, we externally validated this ECG-AI model using SCD patients’ data from the University of Tennessee Health Science Center (UTHSC). Additionally, a logistic regression (LR) model was constructed in the UTHSC cohort by incorporating other simple demographic variables with the outcome of ECG-AI model.Results/Data:The UTHSC external validation cohort included data from 2,107 SCD patients (188 HF and 1,919 SCD patients with no HF), 98% were Black, 72% were female, with a mean age of 39 (14) years. Despite demographic differences between the validation (more Blacks) and derivation cohorts (lower age), our ECG-AI model accurately identified HF with an AUC of 0.80 (0.77-0.82) in the UTHSC SCD cohort. When incorporating ECG-AI outcome (an ECG-based risk value between 0 and 1), age, sex, and race in a LR model, the AUC significantly improved (DeLong Test, p

Read More
Novembre 2024

Abstract 4135476: The Cardiomyocyte Hypertrophy Inhibitor RFN-409, Identified by High Throughput Screening Assay, Suppresses Pressure Overload-induced Systolic Dysfunction in Mice by Suppressing p38 Activity

Circulation, Volume 150, Issue Suppl_1, Page A4135476-A4135476, November 12, 2024. Purpose:When the heart is exposed to stresses such as myocardial infarction or hypertension, it undergoes compensatory hypertrophy in response. However, continuation of the stress causes this compensatory mechanism to fail, and eventually systolic dysfunction or decompensated heart failure occur. As the hypertrophy of individual cardiomyocytes has been observed in this process, controlling cardiomyocyte hypertrophy is a potential target the prevention and treatment of heart failure. In this study, we constructed a high throughput screening (HTS) assay using cardiomyocyte hypertrophy as an index parameter. Compounds that inhibit cardiomyocyte hypertrophy were selected from our low molecular compound library.Methods and Results:In the primary screening, cultured rat primary cardiomyocytes were treated with each compound at a final concentration of 1 µM and then stimulated with 30 µM phenylephrine (PE) for 48 hours. These cells were subjected to fluorescent immunostaining with α-actinin, and cardiomyocyte area was measured using an ArrayScan™ system. The hypertrophy inhibition rate (%) of each compound was calculated as [(PE(+) – compound) / (PE(+) – PE(-))] × 100. The compounds with a hypertrophy inhibition rate greater than 50% and less than 150% were selected as hit compounds. In the secondary screening, these hit compounds were evaluated based on the dose-dependency of cardiomyocyte hypertrophy inhibition and the inhibition of the mRNA levels of the cardiac hypertrophy response genes ANF and BNP using real-time PCR. From the 269 low molecular-weight compounds in the original compound library, eight were selected through the primary and secondary screenings. Among them, we focused on Reference Number 409 (RFN-409). Western blotting indicated that RFN-409 inhibited PE-induced p38 activation. Next, we investigated the effect of RFN-409 on heart failure. Eight-week-old male C57 BL/6J mice were subjected to transverse aortic constriction (TAC) surgery and then randomly assigned to intraperitoneal treatment with RFN-409 (3, 10 mg/kg) or vehicle for eight weeks. RFN-409 at 10 mg/kg significantly prevented TAC-induced increase in left ventricular posterior wall thickness and decrease in left ventricular fractional shortening.Discussion:RFN-409 suppressed TAC-induced development of heart failure, at least partially by inhibiting p38 activity. These findings suggest that RFN-409 may be an effective agent for heart failure therapy.

Read More
Novembre 2024