Circulation, Volume 150, Issue Suppl_1, Page A4147650-A4147650, November 12, 2024. Background:Invasive hemodynamics are the gold standard for diagnosis of heart failure with preserved ejection fraction (HFpEF). A novel, FDA-approved artificial intelligence (AI) technology that uses a single, 4-chamber transthoracic echocardiogram (TTE) image to screen patients for HFpEF shows promise as a non-invasive tool to assist in diagnosis. Development of right ventricular (RV) dysfunction is a sign of a more advanced HFpEF. Advanced RV hemodynamic parameters, beyond pulmonary arterial pressures (PAP), have not been well studied in HFpEF. We sought to correlate advanced RV hemodynamic parameters in patients screened for HFpEF with this AI screening tool.Method:We retrospectively evaluated two cohorts of patients with suspected HFpEF that underwent TTE and RHC at our institution. The most recent TTE for each patient was screened using the AI-based analysis tool and was reported as either “suggestive” or “non-suggestive” of HFpEF – labeled as “positive” or “negative,” respectively. Mean PAP, pulmonary vascular resistance (PVR), pulmonary artery pulsatility index (PAPI), RV cardiac power output (RV-CPO), RV myocardial performance score (RV-MPS), and right atrial pressure to pulmonary capillary wedge pressure ratio (RA:PCWP) were calculated using invasive hemodynamic parameters at rest, and exercise when available. RV-CPO was calculated as [(mean PAP-RAP) x cardiac output] /451, and RV-MPS was calculated as (RV-CPO x PAP)x1.5. Median values were calculated. AI positive and negative groups were compared using Student’s t-test.Results:A total of 47 patients (82% women, 79% Black, average EF 62%) were included, with 23 undergoing subsequent exercise RHC. There were 18 (38%) that screened positive for HFpEF, and 29 (62%) screened negative by TTE AI software. Positive patients had a significantly higher mean PAP (median 31 vs 23 mmHg, p=0.01), PVR (2.1 vs 1.3 WU, p=0.02), and RV-CPO (0.26 vs. 0.17, p=0.04) than patients who were screened negative. There were no significant differences in PAPI, RV-MPS, and RA:PCWP at rest. There were no significant differences in mean PAP, PVR, PAPI RV-CPO, RV-MPS, or RA:PCWP with exercise.Conclusion:Patients screened positive for HFpEF by a novel AI TTE software had significantly higher PAP and RV-CPO at rest, but no differences in PAPI, RV-MPS, or RA:PCWP ratio. This tool may help identify more advanced HFpEF.
Risultati per: Screening, cura e trattamento dell’Epatite C
Questo è quello che abbiamo trovato per te
Abstract 4139026: Prevalence of Familial Hypercholesteremia (FH) Among Participants in the ACCELERATE Trial: Implications for Opportunistic FH Screening and Prognostication
Circulation, Volume 150, Issue Suppl_1, Page A4139026-A4139026, November 12, 2024. Background:Familial hypercholesteremia (FH) leads to elevated low-density lipoprotein cholesterol (LDL-C) and atherosclerotic cardiovascular disease (ASCVD). Although treatable, FH is underdiagnosed. Lipid lowering therapy may mask diagnostic pretreatment LDL-C levels. Participants of ASCVD trials may be enriched for FH, so ASCVD trial enrollment may be a unique contact point to opportunistically diagnose FH.Hypothesis:The population of the ACCELERATE trial of evacetrapib and ASCVD outcomes is enriched for FH.Methods:ACCELERATE is a phase 3 cardiovascular outcomes trial which randomized 12,092 patients with high-risk vascular disease to receive evacetrapib or placebo. FH was not reported. Using participant-level data, we estimated pretreatment LDL-c using validated corrections based on type and dose of statin therapy. We defined severe hypercholesterolemia as pretreatment LDL-C ≥ 190 mg/dl and FH as severe hypercholesterolemia with total cholesterol > 290 mg/dL in a first or second degree relative, consistent with Simon Broome register criteria. We compared trial prevalence to general prevalence (severe hypercholesterolemia ~7%, FH ~0.4%). We evaluated the adjusted association of severe hypercholesterolemia with the primary trial endpoint of ASCVD events using multivariable Cox proportional hazards regression.Results:Data were available for 11,993 participants (99%). The prevalence of severe hypercholesteremia was 15% (1809/11993). The prevalence of FH was 2.1% (255/11993). Pretreatment LDL-C ≥ 190 mg/dL, as compared with pretreatment LDL-C < 190 mg/dL, was significantly associated with a higher incidence of the primary ASCVD trial endpoint (15% vs 13.5% respectively, adjusted hazard ratio 1.19; 95% CI 1.03-1.38, P=0.021;Figure).Conclusion:In a participant-level analysis of a rigorous, independently adjudicated ASCVD outcomes trial, severe hypercholesterolemia and FH were more prevalent in the trial population than the general population based on pretreatment LDL-C calculation. Severe hypercholesterolemia was significantly associated with higher ASCVD incidence. ASCVD trial enrollment may be a novel high-yield contact point for index FH case identification using simple pretreatment LDL-C calculation.
Abstract 4146283: Infrequent Cognitive Assessments in CABG Trials (from 2005-2023) Highlight Need for Improved Strategies for Cognitive Screening post-coronary bypass grafting (CABG) surgery
Circulation, Volume 150, Issue Suppl_1, Page A4146283-A4146283, November 12, 2024. Objective:The incidence of cognitive decline following coronary artery bypass grafting (CABG) is well-documented, significantly impacting patient morbidity, mortality, and quality of life. We conducted a systematic review that examines cognitive outcomes in CABG randomized controlled trials (RCTs) to identify which cognitive assessments were used, their administration frequency, attrition rates, and their effectiveness in detecting perioperative cognitive changes in control groups.Methods:We conducted a search of MEDLINE, EMBASE, Cochrane Library, and PsycINFO for CABG RCTs that included cognitive assessments, from January 2005 to December 2023. Descriptive statistics were used to summarize the frequency, domains, and attrition rates of each cognitive task. For tasks assessed both pre- and post-operatively in at least three RCTs, control group scores and standard deviations were reported.Results:Out of 3337 screened studies, 2163 were CABG RCTs, and only 69 (3.2%) included cognitive evaluations (Figure 1). These trials involved 15,839 subjects (79% male, mean age 64.4, median follow-up time 90 days) and used 145 unique cognitive tasks. The Trailmaking Test Part B (40/69; 58.0%) and Part A (38/69; 55.0%) were the most frequently used. Only 7 tasks had means and standard deviations reported before and after surgery in more than three RCTs, and none detected significant pre- to post-operative changes. Attrition rates averaged 19.3%, with a wide range from 0% to 62%. Figure 2 demonstrates the decline in cognitive assessments in CABG trials over the years, with a sharp decline after 2014. Trials that assessed cogntion after 2014 tended to favor screening tasks (MMSE/MoCA) alone.Conclusion:Cognitive assessments are infrequent in CABG trials, and existing tests fail to consistently detect cognitive changes. To effectively evaluate and address cognitive impact after CABG, new assessment strategies that are resilient to attrition and practical for use in diverse trial settings are needed.
Abstract 4144973: AI-enabled Nationwide Opportunistic Screening of Non-Contrast Chest CT: Association between Cardiac Calcium Score and All-cause Mortality/Cardiovascular Events in Taiwan
Circulation, Volume 150, Issue Suppl_1, Page A4144973-A4144973, November 12, 2024. Background:Cardiac calcium, which includes coronary and extra-coronary calcification, is often incidentally found in chest CT scans performed for various reasons. Despite its prognostic value, manual quantification of cardiac calcium in non-gated chest CT images is labor-intensive.Goals:This retrospective study aims to perform automatic quantification and scoring of cardiac calcium in non-contrast-enhanced chest CTs. The objective is to determine associations between automatic calcium scoring and outcomes such as all-cause mortality, non-fatal myocardial infarction (MI), and non-fatal stroke.Methods:We conducted a nationwide cohort study using the Taiwan National Health Insurance Research Database (NHIRD) from 2016 to 2022. Patients under 20 years old, with a diagnosis of malignancy, or with outcome events before the CT acquisition were excluded. HeaortaNet 1.0, a validated AI model, was used for cardiac calcium scoring. Comorbidities were determined using ICD diagnostic codes for ≥2 consecutive outpatient visits within the year before the index date. Outcomes were censored at the first occurrence of mortality or relevant ICD codes for MI or stroke.Results:The retrospective cohort included 279,415 patients (56.37% male, mean age 60.31±16.54). All-cause mortality occurred in 12.82% of patients within a 3-year follow-up. The 3-year incidence rates of non-fatal MI and non-fatal stroke were 0.86% and 2.07%, respectively. Multivariate-adjusted Cox hazard ratios (95% confidence intervals) for any composite outcome were 1.51 (1.46-1.57), 2.09 (2.01-2.17), 2.63 (2.53-2.74), and 3.37 (3.24-3.50) for cardiac calcium scores of 1-100, 101-400, 401-1000, and >1000, compared to a score of 0. Adjusted Cox hazard ratios for all-cause mortality were 1.62 (1.56-1.69), 2.29 (2.19-2.39), 2.91 (2.78-3.04), and 3.80 (3.64-3.96) for scores of 1-100, 101-400, 401-1000, and >1000, compared to a score of 0.Conclusion:AI-enabled opportunistic screening of non-contrast chest CT for cardiac calcium scoring is associated with all-cause mortality and cardiovascular events. This is the first large-scale cohort study to use an AI model for comprehensive cardiac calcium screening.
Abstract 4144947: Invasive Hemodynamic Validation of a Novel Echocardiographic Artificial Intelligence Screening Tool for HFpEF
Circulation, Volume 150, Issue Suppl_1, Page A4144947-A4144947, November 12, 2024. Background:Right heart catheterization (RHC) is the gold standard for diagnosing heart failure with preserved ejection fraction (HFpEF). An FDA-approved artificial intelligence (AI) technology uses a four-chamber transthoracic echocardiogram (TTE) image to screen patients for HFpEF.Methods:We compared invasive hemodynamic data between patients screened for HFpEF by this TTE AI algorithm. We retrospectively collected data from two cohorts of patients with an ejection fraction (EF) ≥ 50% undergoing RHC for the evaluation of HFpEF. The most recent TTE was screened using the AI tool and reported as either suggestive or non-suggestive for HFpEF – labeled as “positive” or “negative,” respectively. Invasive hemodynamic parameters at rest and during exercise were collected. Positive and negative groups were compared using Student’s t-test and Mann-Whitney U test.Results:A total of 47 patients (82% women, 79% Black, average EF 62%) had a previous RHC, with 23 undergoing subsequent exercise RHC. There were 18 patients (38%) with a positive AI result and 29 (62%) negative. Positive patients had significantly higher rates of atrial fibrillation (38% vs 11%, p=.03), NT-proBNP levels (median 451 vs 117 ug/mL, p=.001), and H2FPEF (median 6 vs 4, p 15 mmHg, consistent with HFpEF, compared to only 14 of 28 (50%) negative patients. With exercise 6 of 7 (86%) positive patients had PCWP ≥ 25 mmHg, consistent with HFpEF, compared to 11 of 20 (55%) negative patients. At rest, positive patients had significantly higher PCWP, mean pulmonary arterial pressure (mPAP), and pulmonary vascular resistance (PVR). After exercise, there were no significant differences in PCWP or mPAP between the two groups, but thermodilution cardiac output was significantly lower in the positive patients.Conclusion:Patients identified as HFpEF positive by a validated TTE-guided AI tool were more likely to have HFpEF confirmed invasively, indicating its potential for risk stratification. However, the negative predictive value for HFpEF confirmed by invasive hemodynamics was low in this population.
Abstract 4135476: The Cardiomyocyte Hypertrophy Inhibitor RFN-409, Identified by High Throughput Screening Assay, Suppresses Pressure Overload-induced Systolic Dysfunction in Mice by Suppressing p38 Activity
Circulation, Volume 150, Issue Suppl_1, Page A4135476-A4135476, November 12, 2024. Purpose:When the heart is exposed to stresses such as myocardial infarction or hypertension, it undergoes compensatory hypertrophy in response. However, continuation of the stress causes this compensatory mechanism to fail, and eventually systolic dysfunction or decompensated heart failure occur. As the hypertrophy of individual cardiomyocytes has been observed in this process, controlling cardiomyocyte hypertrophy is a potential target the prevention and treatment of heart failure. In this study, we constructed a high throughput screening (HTS) assay using cardiomyocyte hypertrophy as an index parameter. Compounds that inhibit cardiomyocyte hypertrophy were selected from our low molecular compound library.Methods and Results:In the primary screening, cultured rat primary cardiomyocytes were treated with each compound at a final concentration of 1 µM and then stimulated with 30 µM phenylephrine (PE) for 48 hours. These cells were subjected to fluorescent immunostaining with α-actinin, and cardiomyocyte area was measured using an ArrayScan™ system. The hypertrophy inhibition rate (%) of each compound was calculated as [(PE(+) – compound) / (PE(+) – PE(-))] × 100. The compounds with a hypertrophy inhibition rate greater than 50% and less than 150% were selected as hit compounds. In the secondary screening, these hit compounds were evaluated based on the dose-dependency of cardiomyocyte hypertrophy inhibition and the inhibition of the mRNA levels of the cardiac hypertrophy response genes ANF and BNP using real-time PCR. From the 269 low molecular-weight compounds in the original compound library, eight were selected through the primary and secondary screenings. Among them, we focused on Reference Number 409 (RFN-409). Western blotting indicated that RFN-409 inhibited PE-induced p38 activation. Next, we investigated the effect of RFN-409 on heart failure. Eight-week-old male C57 BL/6J mice were subjected to transverse aortic constriction (TAC) surgery and then randomly assigned to intraperitoneal treatment with RFN-409 (3, 10 mg/kg) or vehicle for eight weeks. RFN-409 at 10 mg/kg significantly prevented TAC-induced increase in left ventricular posterior wall thickness and decrease in left ventricular fractional shortening.Discussion:RFN-409 suppressed TAC-induced development of heart failure, at least partially by inhibiting p38 activity. These findings suggest that RFN-409 may be an effective agent for heart failure therapy.
Abstract 4137945: A Tuscany regional screening program for juvenile sudden cardiac death in high schools: the JUST project
Circulation, Volume 150, Issue Suppl_1, Page A4137945-A4137945, November 12, 2024. Background:Juvenile sudden cardiac death (SCD) has high impact on the family and society of the victim. While SCD screening programmes are effective in athletes, most (70-80%) young non-athletes individuals are not routinely screened.Research question:We hypothesized that a low-cost screening program may early identify subjects at risk of juvenile SCD, even in non-athletes.Goals:To evaluate the prevalence of SCD-related abnormal findings and, ultimately, to test the effectiveness of a screening programme in high schools.Methods:Between April 2023 and June 2024, high school individuals were enrolled in a screening programme in Tuscany (Pisa, Lucca and Livorno), based on a questionnaire investigating family history of juvenile SCD or diseases predisposing to SCD and symptoms (syncope, palpitations, chest pain), and digitally recorded electrocardiograms (ECGs). In case of abnormal findings, second-line investigations locally (echocardiography, Holter ECG monitoring and/or exercise testing) or third-line investigations at Fondazione Monasterio, Pisa, Italy (cardiac MRI, genetics or electrophysiological testing) were planned. Only preliminary results of the first-line screening are hereby reported.Results:We have currently enrolled 872 individuals (age 17.1±1.8 years, 481 [55%] males, 288 [33%] smokers, 102 [11.7%] recreational drugs users, and 645 [74%] non-competitive athletes). At questionnaires, 56 individuals (6.4%) had a family history of SCD, 32 (3.7%) a first-degree relative with cardiomyopathy, and 13 (1.5%) with channelopathy. As for symptoms, 21 participants (2.4%) reported chest pain or 26 (3%) syncope during exertion, while 90 (10.3%) paroxysmal palpitations. At ECG, we found 2 cases (0.2%) with a type-2 Brugada pattern, 1 female case (0.1%) with prolonged QTc interval (QTc 480 ms), 20 cases (2.3%) with V1-V3 T wave inversion (age > 16 years), 18 cases (2%) of left ventricular hypertrophy (non-athletes), and 4 cases (0.5%) with atypical ventricular ectopy. After the first-line screening, 61 (7%) and 10 (1.2%) individuals were referred to second and third-line investigations, which are currently ongoing.Conclusions:We hereby propose a screening model in high schools that includes specific health questionnaires and digitally recorded ECGs. From preliminary analyses, this approach seems sensitive enough to be tested as a model to favour the early diagnosis of diseased conditions associated with juvenile SCD in the general population.
Abstract 4131622: Opportunistic Screening of Chronic Liver Disease With Deep Learning Enhanced Echocardiography
Circulation, Volume 150, Issue Suppl_1, Page A4131622-A4131622, November 12, 2024. Introduction:Chronic liver disease affects more than 1.5 billion adults worldwide, but the majority of cases are asymptomatic and undiagnosed. Echocardiography is broadly performed and visualizes the liver; however, this information is not diagnostically leveraged.Hypothesis and Aims:We hypothesized that a deep-learning algorithm can detect chronic liver diseases using subcostal echocardiography images that contains hepatic tissue. To develop and evaluate a deep learning algorithm on subcostal echocardiography videos to enable opportunistic screening for chronic liver disease.Methods:We identified adult patients who received echocardiography and abdominal imaging (either abdominal ultrasound or abdominal magnetic resonance imaging) with ≤30 days between tests. A convolutional neural network pipeline was developed to predict the presence of cirrhosis or steatotic liver disease (SLD) using echocardiogram images. The model performance was evaluated in a held-out test dataset, dataset in which diagnosis was made by magnetic resonance imaging, and external dataset.Results:A total of 2,083,932 echocardiography videos (51,608 studies) from Cedars-Sinai Medical Center (CSMC) were used to develop EchoNet-Liver, an automated pipeline that identifies high quality subcostal images from echocardiogram studies and detects presence of cirrhosis or SLD. In a total of 11,419 quality-controlled subcostal videos from 4,849 patients, a chronic liver disease detection model was able to detect the presence of cirrhosis with an AUC of 0.837 (0.789 – 0.880) and SLD with an AUC of 0.799 (0.758 – 0.837). In a separate test cohort with paired abdominal MRIs, cirrhosis was detected with an AUC of 0.726 (0.659-0.790) compared to MR elastography and SLD was detected with an AUC of 0.704 (0.689-0.718). In the external test cohort of 66 patients (n = 130 videos), the model detected cirrhosis with an AUC of 0.830 (0.738 – 0.909) and SLD with an AUC of 0.768 (0.652 – 0.875).Conclusions:Deep learning assessment of clinically indicated echocardiography enables opportunistic screening of SLD and cirrhosis. Application of this algorithm may identify patients who may benefit from further diagnostic testing and treatment for hepatic disease.
Abstract 4124675: Deep Learning Screening of Cardiac MRIs Uncovers Undiagnosed Hypertrophic Cardiomyopathy in the UK BioBank
Circulation, Volume 150, Issue Suppl_1, Page A4124675-A4124675, November 12, 2024. Introduction:The prevalence of hypertrophic cardiomyopathy (HCM) in the UK Biobank based on ICD-10 codes (.07%) is lower than global estimates of disease prevalence (0.2 – 0.5%). Prior studies using this data have remarked on the limitations of findings given likely underdiagnosis. The availability of cardiac MRI scans on a fraction of the participants offers an opportunity to identify missed diagnoses.Aims:This study seeks to utilize a generalizable deep learning model to detect likely cases of undiagnosed hypertrophic cardiomyopathy from cardiac MRIs in the UK Biobank.Methods:The foundational model was trained on a multi-institutional dataset of 14,073 cardiac MRIs via a self-supervised contrastive learning approach that sought to minimize the divergence between scans and their associated radiology reports. The pre-trained model was fine-tuned to diagnose hypertrophic cardiomyopathy on a distinct cohort of 4,870 MRIs with 368 cases of HCM, achieving an AUC of 0.94. The fine-tuned model was applied to the UK Biobank cardiac MRI dataset to ascertain predicted probabilities of HCM. Cases exceeding a threshold of 95% – correlating to the top 0.5% of cases (expected specificity of 97% and sensitivity of 60%) – were screened in for manual reading. In a blinded fashion, a board-certified radiologist was tasked with diagnosing HCM on a sample of cases composed of high and low predicted probabilities.Results:Of the 43,017 patients with cardiac MRIs, only 9 (.02%) had an ICD diagnosis of HCM. 266 cardiac MRIs were manually reviewed: 216 had greater than 95% predicted probability of HCM; 50 negative controls were randomly selected amongst cases with predicted probability less than 10%. The radiologist concurred with an HCM diagnosis for 115 cases (sensitivity 53%, specificity 98%), 112 of which were previously undiagnosed. The prevalence of hypertension and aortic stenosis did not significantly differ between the cohort of true positives (69.2%) and false positives (76.6%). The corrected prevalence of HCM in the UK BioBank MRI cohort is estimated at 0.28%.Conclusions:The findings of this study illustrate the remarkable ability of a generalizable deep learning model to detect undiagnosed cases of a rare disease process from cardiac MRIs. This is an important milestone that may allow for widespread screening of hypertrophic cardiomyopathy while minimizing demand for radiologist labor, and thereby allow patients to reap the substantial benefits of earlier treatment.
Abstract 4140494: Postpartum linkage to primary care: Does screening for social needs identify those at risk for loss to follow-up?
Circulation, Volume 150, Issue Suppl_1, Page A4140494-A4140494, November 12, 2024. Background:Primary care after pregnancy is recommended, especially for individuals with recent adverse pregnancy outcomes (APOs, such as preeclampsia or gestational diabetes), who are at increased risk for future heart disease. Health-related social needs (HRSNs) are recognized barriers to care, yet their pregnancy-related prevalence and associations with care are unknown. We sought to (1) describe the pregnancy-related prevalence of HRSNs, and (2) assess associations between pregnancy-related HRSNs and subsequent linkage to primary care.Methods:We analyzed electronic health record data for individuals with prenatal care and delivery (2018-2021) at our urban safety-net hospital. HRSNs were assessed via a routine screener, and we summarized individual responses during pregnancy through 6 weeks post partum as: any positive, all negative, or never screened. Postpartum linkage to primary care was defined as a completed primary care visit after 6 weeks through 1 year post partum. We analyzed the prevalence of HRSNs and their associations with linkage to primary care, using adjusted log-linked binomial regression models. In stratified models we assessed for effect modification by APO history and other variables.Results:Of 4941 individuals in our sample, 53% identified as Black non-Hispanic and 21% as Hispanic, 68% were publicly insured, and 93% completed ≥1 HRSN screening. Nearly 1 in 4 screened positive for any HRSN, most often food insecurity (14%) or housing instability (12%), and 53% linked to primary care. Compared with those who screened negative for all HRSNs (n=3491), linkage to primary care was similar among those who screened positive for any HRSNs (n=1079; adjusted risk ratio, aRR 1.04, 95% confidence interval, CI: 0.98-1.10) and lower among those never screened (n=371; aRR 0.77, 95% CI: 0.68-0.86). We found no evidence of effect modification by APO history, race/ethnicity, insurance, language, or Covid-19 pandemic exposure.Conclusions:In this diverse postpartum sample, we identified a 24% prevalence of pregnancy-related HRSNs and 53% subsequent linkage to primary care. Linkage to primary care was not associated with HRSN screening result (positive versus negative) but was significantly negatively associated with being missed by HRSN screening. Further research is needed to better understand HRSN screening practices and who is missed by screening, and to identify modifiable barriers to postpartum primary care especially after APOs.
Abstract 4143538: A Predictive Tool and Diagnostic Screening Algorithm for the Identification of Transthyretin Amyloid Cardiomyopathy in High-Risk Patient Populations
Circulation, Volume 150, Issue Suppl_1, Page A4143538-A4143538, November 12, 2024. Introduction:Transthyretin amyloid cardiomyopathy (ATTR-CM) is an underdiagnosed disease that may result in heart failure (HF), arrhythmias, and valvular disease. Our aim was to develop (1) screening criteria to identify high-risk patients for ATTR-CM and (2) our own predictive tool of ATTR-CM.Methods:This was a prospective observational registry at 2 academic sites in Canada. We designed screening criteria to identify high-risk patients in HF, atrial fibrillation, transcatheter valve clinics, and in cardiologist’s offices from January 2019-December 2022. Patients >60 years were included if one of several screening criteria was met and they were referred for pyrophosphate scan by the cardiologist. Univariate and multivariate logistic regression were used to identify predictive clinical, imaging, and biochemical characteristics.Results:In total, 2500 patients were screened, and 200 patients were enrolled with a follow-up duration of 3 years. The mean age was 78 years and 65% were male. Forty-six (23%) had a diagnosis of ATTR-CM and 7 (4%) were diagnosed with AL-amyloidosis. ATTR-CM patients were older (83±7 vs. 77±8; p
Abstract 4141112: Identifying Gaps in Screening&Treatment for Peripheral Artery Disease (Pad): A Survey on Provider Knowledge, Attitudes, and Practices
Circulation, Volume 150, Issue Suppl_1, Page A4141112-A4141112, November 12, 2024. Background:It is estimated that Peripheral Artery Disease (PAD) affects between 8.5 and 12 million Americans and its prevalence among adults over 40 years of age is increasing. PAD disproportionately affects Black Americans who, at any age, are twice as likely to experience PAD as their white counterparts but are less likely to be screened and benefit from early diagnosis and treatment.Research Questions/Hypothesis:Despite the high prevalence of PAD and the importance of early intervention, screening for PAD remains limited and/or underutilized particularly in primary care settings where most cases of PAD can be identified. This study sought to understand provider knowledge of PAD, associated risk factors, treatment, understanding of disparities in PAD and barriers and facilitators of PAD screening. It was hypothesized that limited resources, lack of awareness on the part of providers and patients, limitations of training in vascular medicine, and other issues are contributing to PAD morbidity and mortality, particularly among Black and Hispanic populations.Methods:Because no current PAD survey was found in the literature, a survey for providers to determine their knowledge, attitude, and beliefs about PAD and the importance and process of PAD screening for patients at risk was developed. The survey was administered to CommonSpirit Health providers in Sacramento, CA between December 2023- January 2024. Specialties engaged in the survey (N=145) included primary care, endocrine, nephrology, cardiology and podiatry providers.Results:Response rate was 21%. Of those responding, primary care was the specialty most represented(69%). A total of 65% of respondents identified medical treatment of risk factors as the primary way to treat PAD, 32% rated their knowledge of risk reduction therapies in PAD as below average, and 88% of respondents were either somewhat or not familiar with racial disparities in PAD. 24% of respondents identified the ‘lack of knowledge of PAD management guidelines’ as the most important barrier to their patients with PAD not receiving risk reduction therapies.Conclusions:Initial survey of providers identifies lack of knowledge as a key indicator of PAD screening practices, including knowledge on racial disparities in PAD. These identified gaps can inform targeted interventions to improve screening, early detection and treatment of PAD.
Abstract 4141975: Feasibility of Using Wearables to Obtain High-Fidelity ECG Signals for Cardiovascular Disease Screening in Palestinian Refugees in Jordan
Circulation, Volume 150, Issue Suppl_1, Page A4141975-A4141975, November 12, 2024. Background:Refugee populations often experience high rates of cardiovascular disease (CVD). Factors such as significant physiological stress, trauma, limited access to healthcare, substance abuse, and poor lifestyle choices contribute to disease progression and an increased incidence of cardiovascular events. We sought to evaluate the feasibility of using wearables to obtain high-fidelity ECG signals for CVD screening in refugees in Jordan.Methods:This observational cross-sectional study involved outpatients at one of four regional United Nations’ primary care clinics for Palestinian refugee in Jordan. Research assistants collected health histories from consented patients and recorded a 30-second, 6-lead ECG using a handheld, Bluetooth-enabled, wearable device (KardiaMobile 6L, AliveCor Inc., Mountain View, CA, USA). The digital ECG signals were stored on the Bluetooth-synced mobile device and then exported to a cloud server for offline analysis. The raw ECG recordings were preprocessed, and a single median beat was calculated per lead. Waveforms were segmented, and duration and amplitude measures were determined using a previously validated custom algorithm (University of Pittsburgh, PA, USA). All ECG recordings were reviewed by an independent physician.Result:The sample included 31 patients (age 52±13, 64% Females). Risk factors were prevalent in this group, including hypertension (74%), high cholesterol (65%), diabetes (64%), in-camp living (33%), and smoking (30%). Figure 1 shows the population-averaged median beat with 99% CI distribution of this sample. Mean QRS duration was 95±23 ms (range 53−150) and QTc interval was 403±53 (range 267−513). Most patients were in normal sinus rhythm (84%), and remaining patients were in atrial fibrillation or flutter (16%). Other clinically significant abnormalities included non-specific ST-T changes (9.7%), left bundle branch block (1.6%), and LVH with left ventricular strain (1.6%).Conclusion:This pilot study demonstrated that it is feasible to obtain high fidelity ECG signals using wearables to screen for CVD in refugees. Such affordable, noninvasive, point-of-care screening tools could enable early diagnosis and treatment in these patients.
Abstract 4141994: Targeted Atrial Fibrillation Screening in Older Adults: A Secondary Analysis of the VITAL-AF Trial
Circulation, Volume 150, Issue Suppl_1, Page A4141994-A4141994, November 12, 2024. Background:Screening trials for atrial fibrillation (AF) have produced mixed results; however, it is unclear if there is a subset of individuals for whom screening would be effective. Identifying such a subgroup would support targeted screening.Methods:We conducted a secondary analysis of VITAL-AF (NCT03515057), a randomized trial of one-time, single-lead ECG screening during primary care visits. We tested two approaches to identify a subgroup that would benefit from screening (i.e., heterogenous screening effects). First, we use a potential outcomes framework to develop an effect-based model. Specifically, we predicted the likelihood of AF diagnosis under both screening and usual care conditions using LASSO, a penalized regression method. The difference between these probabilities was the predicted screening effect. Second, we used the CHARGE-AF score, a validated AF risk model. We used interaction testing to determine if the observed diagnosis rates in the screening and control arms were statistically different when stratified by decile of the predicted screening effect and predicted AF risk.Results:Baseline characteristics were similar between the screening (n=15187) and usual care (n=15078) groups (mean age 74 years, 59% female). On average, screening did not significantly increase the AF diagnosis rate (2.55 vs. 2.30 per 100 person-years, rate difference 0.24, 95%CI -0.18 to 0.67). Patients in the highest decile of predicted screening efficacy (n=3026, 10%) experienced a large and statistically significant increase in AF diagnosis rates due to screening (6.5 vs. 3.06 per 100 person-years, rate difference 3.45, 95%CI 1.62 to 5.28; interaction p-value 0.038) (Figure 1). In this group, the mean age was 84 years and 68% were female. Participants in the highest decile of AF risk using the CHARGE-AF score did not have a statistically significant increase in AF diagnosis rates due to screening (Figure 2). Predicted screening effectiveness and predicted AF risk were poorly correlated (Spearman coefficient 0.13).Conclusions:One-time screening may increase AF diagnoses in a subgroup of older adults with the largest predicted screening effect. In contrast, predicted AF risk was a poor proxy for predicted screening efficacy. These data caution against the assumption that high AF risk is necessarily correlated with high screening efficacy. Prospective studies are needed to validate whether AF screening is effective in the subgroup identified in this study.
Abstract 4147292: An ECG-based Heart Failure Screening Tool for People with Sickle Cell Disease
Circulation, Volume 150, Issue Suppl_1, Page A4147292-A4147292, November 12, 2024. Background:Tissue hypoxia and chronic anemia associated with sickle cell disease (SCD) leads to structural and physiological alterations in the heart. Early detection of heart failure (HF) in patients with SCD can assist with timely interventions, but current methods (e.g., echocardiogram and heart MRI) are not easily accessible in resource-deprived settings. The integration of artificial intelligence (AI)-powered tools utilizing low-cost ECG data to increase the power to detect more patients eligible for early treatment, thus improving patient outcomes, and needs to be validated.Hypothesis:We hypothesize that ECG-AI models developed to detect incident HF in the general population can detect HF in SCD patients.Methods/Approach:We previously developed an ECG-AI model employing convolutional neural networks to classify patients with HF using a large ECG-repository at Wake Forest Baptist Health (WFBH). This model was developed using 1,078,198 digital ECGs from 165,243 patients, 73% White, 19% Black, and 52% female individuals, with a mean age (SD) of 58 (15) years. The hold-out AUC of this previous model in distinguishing ECGs of HF patients from controls was 0.87. In this study, we externally validated this ECG-AI model using SCD patients’ data from the University of Tennessee Health Science Center (UTHSC). Additionally, a logistic regression (LR) model was constructed in the UTHSC cohort by incorporating other simple demographic variables with the outcome of ECG-AI model.Results/Data:The UTHSC external validation cohort included data from 2,107 SCD patients (188 HF and 1,919 SCD patients with no HF), 98% were Black, 72% were female, with a mean age of 39 (14) years. Despite demographic differences between the validation (more Blacks) and derivation cohorts (lower age), our ECG-AI model accurately identified HF with an AUC of 0.80 (0.77-0.82) in the UTHSC SCD cohort. When incorporating ECG-AI outcome (an ECG-based risk value between 0 and 1), age, sex, and race in a LR model, the AUC significantly improved (DeLong Test, p
Abstract 4145524: Artificial Intelligence-Based Screening for Blood Pressure Phenotypes of White-coat and Masked Hypertension in Outpatient Settings
Circulation, Volume 150, Issue Suppl_1, Page A4145524-A4145524, November 12, 2024. Introduction:White-coat hypertension (WCH) and masked hypertension (MH) complicate accurate blood pressure (BP) monitoring. While ambulatory BP monitoring (ABPM) is effective, its high cost and limited availability are significant barriers.Hypothesis:We hypothesized that a machine learning (ML) model using clinical data from a single outpatient visit could accurately predict WCH and MH.Aims:This study aimed to develop and validate ML-based prediction models for WCH and MH using accessible clinical data to improve diagnostic efficiency and accessibility.Methods:We enrolled patients from two hypertension cohorts, after excluding those with incomplete data. Patients were classified by office BP and ABPM readings per American Heart Association guidelines. ML models, including Multi-layer Perceptron (MLP), Support Vector Machine (SVM), and Tabular Prior-Data Fitted Network (Tab-PFN), were developed. Input parameters included demographic data (age, gender, height, weight, smoker), and office BP (OBP) and heart rate measurements. Principal Component Analysis (PCA), kernel PCA (kPCA), or t-distributed stochastic neighbor embedding (t-SNE) were used to improve class separability.Results:The study population comprised 1481 participants with a mean age of 47.6 years (SD 13.6), 65% of whom were male and 20.1% were smokers. OBP measurements showed a mean systolic BP (SBP) of 128.7 mmHg (SD 15.4) and a mean diastolic BP (DBP) of 84.2 mmHg (SD 11.6). ABPM showed a mean 24-hour systolic BP of 122.5 mmHg (SD 11.8) and diastolic BP of 79.3 mmHg (SD 10.1). The inclusion of demographic and OBP data, along with advanced resampling and dimensionality reduction techniques, significantly improved the model’s predictive ability. The final TabPFN model achieved the best performance with recall, precision, F1 score, and accuracy of 0.747, 0.931, 0.829, and 0.807 for WCH, and 0.713, 0.954, 0.816, and 0.907 for MH.Conclusion:Our ML-based model effectively predicts WCH and MH using accessible clinical data, offering a cost-effective alternative before applying ABPM.